If  y = √(sin⁡γ€–x+yγ€— ), then dy/dx is equal to

(A) cos⁡x/(2y-1) 

(B) cos⁡x/(1-2y)

(C) sin⁡x/(1-2y) 

(D) (-4x 3 )/(2y -1)

This question is similar to Example 25 - Chapter 5 Class 12 - Continuity and Differentiability

Slide98.JPG

Slide99.JPG

Go Ad-free

Transcript

Question 20 If y = √(sin⁑〖π‘₯+𝑦〗 ), then 𝑑𝑦/𝑑π‘₯ is equal to (A) cos⁑π‘₯/(2π‘¦βˆ’1) (B) cos⁑π‘₯/(1βˆ’2𝑦) (C) sin⁑π‘₯/(1βˆ’2𝑦) (D) (βˆ’4π‘₯^3)/(2𝑦 βˆ’1) 𝑦=√(𝑠𝑖𝑛⁑〖π‘₯+𝑦〗 ) Squaring both sides 𝑦^2=(√(sin⁑〖π‘₯+𝑦〗 ))^2 π’š^𝟐=π’”π’Šπ’β‘γ€–π’™+π’šγ€— 𝑦^2βˆ’π‘¦=sin⁑π‘₯ Differentiating both sides wrt π‘₯ (𝑑〖(𝑦〗^2))/𝑑π‘₯βˆ’π‘‘π‘¦/𝑑π‘₯ = (𝑑(𝑠𝑖𝑛⁑〖π‘₯)γ€—)/𝑑π‘₯ πŸπ’š π’…π’š/π’…π’™βˆ’π‘‘π‘¦/𝑑π‘₯=𝒄𝒐𝒔⁑𝒙 𝑑𝑦/𝑑π‘₯(2yβˆ’1) =π‘π‘œπ‘ β‘π‘₯ π’…π’š/𝒅𝒙 = 𝒄𝒐𝒔⁑𝒙/((πŸπ’š βˆ’ 𝟏)) So, the correct answer is (A)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo