The set of points where the function f given by f (x) = |2x−1| sin x is differentiable is

(A)R     

(B) R − {1/2} 

(C) (0, ∞)    

(D) none of these

This question is similar to Ex 5.2, 9 - Chapter 5 Class 12 - Continuity and Differentiability

Slide70.JPG

Slide71.JPG
Slide72.JPG

Go Ad-free

Transcript

Question 13 The set of points where the function f given by f (x) = |2xβˆ’1| sin x is differentiable is R (B) R βˆ’ {1/2} (C) (0, ∞) (D) none of these f(x) = |2π‘₯βˆ’1| sin⁑π‘₯ = {β–ˆ((2π‘₯βˆ’1) sin⁑π‘₯, 2π‘₯βˆ’1β‰₯0@βˆ’(2π‘₯βˆ’1) sin⁑π‘₯, 2π‘₯βˆ’1<0)─ = {β–ˆ((2π‘₯βˆ’1) sin⁑π‘₯, π‘₯β‰₯1/2@βˆ’(2π‘₯βˆ’1) sin⁑〖π‘₯ ,γ€— π‘₯<1/2)─ Now, f(x) is a differentiable at x = 1/2 if LHD = RHD (π’π’Šπ’Ž)┬(π‘β†’πŸŽ) (𝒇(𝒙) βˆ’ 𝒇(𝒙 βˆ’ 𝒉))/𝒉 = (π‘™π‘–π‘š)┬(hβ†’0) (𝑓(1/2) βˆ’ 𝑓(1/2 βˆ’ β„Ž))/β„Ž =(π‘™π‘–π‘š)┬(hβ†’0) (|2(1/2)βˆ’1| sin⁑(1/2)βˆ’|2(1/2 βˆ’ β„Ž)βˆ’ 1| sin⁑(1/2 βˆ’β„Ž))/β„Ž = (π‘™π‘–π‘š)┬(hβ†’0) (0 βˆ’|1 βˆ’ β„Ž βˆ’ 1| γ€–sin 〗⁑(1/2 βˆ’ β„Ž))/β„Ž = (π‘™π‘–π‘š)┬(hβ†’0) (0 βˆ’|βˆ’ β„Ž| sin⁑(1/2 βˆ’ β„Ž))/β„Ž = (π‘™π‘–π‘š)┬(hβ†’0) (βˆ’β„Ž γ€–sin 〗⁑(1/2 βˆ’ β„Ž))/β„Ž = (π‘™π‘–π‘š)┬(hβ†’0) βˆ’sin⁑(1/2 βˆ’ β„Ž) = βˆ’sin⁑(1/2βˆ’0) = βˆ’π‘ π‘–π‘› 1/2 = βˆ’ 𝝅/πŸ” (π’π’Šπ’Ž)┬(π‘β†’πŸŽ) (𝒇(𝒙+𝒉) βˆ’ 𝒇(𝒙 ))/𝒉 = (π‘™π‘–π‘š)┬(hβ†’0) (𝑓(1/2+β„Ž) βˆ’ 𝑓(1/2))/β„Ž = (π‘™π‘–π‘š)┬(hβ†’0) (|(2(1/2+β„Ž)βˆ’1| 𝑠𝑖𝑛⁑(1/2+β„Ž)βˆ’|2(1/2)βˆ’1| 𝑠𝑖𝑛⁑(1/2))/β„Ž = (π‘™π‘–π‘š)┬(hβ†’0) (|1+ β„Ž βˆ’1| γ€–sin 〗⁑〖(1/2 + β„Ž) γ€—βˆ’ 0 )/β„Ž = (π‘™π‘–π‘š)┬(hβ†’0) (|β„Ž| γ€–sin 〗⁑(1/2+β„Ž))/β„Ž = (π‘™π‘–π‘š)┬(hβ†’0) (β„Ž γ€–sin 〗⁑(1/2+β„Ž))/β„Ž = (π‘™π‘–π‘š)┬(hβ†’0) sin⁑(1/2+β„Ž) = γ€–sin 〗⁑(1/2+0) = sin 1/2 = 𝝅/πŸ” Since LHD β‰  RHD ∴ f(x) is not differentiable at x = 1/2 Hence, we can say that f(x) is differentiable on R βˆ’ {𝟏/𝟐} So, the correct answer is (B)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo