The set of points where the functions f given by f (x) = |x – 3| cos x is differentiable is
(A) R
(B) R − {3}
(C) (0, ∞)
(D) None of these
This question is similar to Ex 5.2, 9 - Chapter 5 Class 12 - Continuity and Differentiability
NCERT Exemplar - MCQs
Question 2 Important
Question 3
Question 4
Question 5
Question 6 Important
Question 7 Important
Question 8 You are here
Question 9 Important
Question 10
Question 11
Question 12 Important
Question 13
Question 14 Important
Question 15
Question 16 Important
Question 17
Question 18 Important
Question 19
Question 20
Question 21 Important
Question 22
Question 1 Important
Question 2
Question 3
Question 4 Important
NCERT Exemplar - MCQs
Last updated at Dec. 16, 2024 by Teachoo
This question is similar to Ex 5.2, 9 - Chapter 5 Class 12 - Continuity and Differentiability
Question 8 The set of points where the functions f given by f (x) = |x โ 3| cos x is differentiable is (A) R (B) R โ {3} (C) (0, โ) (D) None of these f(x) = |๐ฅโ3| cosโก๐ฅ = {โ((๐ฅโ3) cosโก๐ฅ, ๐ฅโ3โฅ0@โ(๐ฅโ3) cosโก๐ฅ, ๐ฅโ3<0)โค = {โ((๐ฅโ3) cosโก๐ฅ, ๐ฅโฅ3@โ(๐ฅโ3) cosโก๐ฅ, ๐ฅ<3)โค Now, f(x) is a differentiable at x = 3 if LHD = RHD (๐๐๐)โฌ(๐กโ๐) (๐(๐) โ ๐(๐ โ ๐))/๐ = (๐๐๐)โฌ(hโ0) (๐(3) โ ๐(3 โ โ))/โ = (๐๐๐)โฌ(hโ0) (|3 โ 3| cosโก3โ|(3 โ โ)โ3| cosโกใ(3 โ โ)ใ)/โ = (๐๐๐)โฌ(hโ0) (0 โ|3 โ โ โ3| cosโกใ(3 โ โ)ใ)/โ = (๐๐๐)โฌ(hโ0) (0 โ|โโ| cosโกใ(3 โ โ)ใ)/โ = (๐๐๐)โฌ(hโ0) (โโ cosโกใ(3 โ โ)ใ)/โ = (๐๐๐)โฌ(hโ0) โcosโกใ(3 โโ)ใ = โcosโกใ(3 โ0)ใ = โ๐๐๐โก๐ (๐๐๐)โฌ(๐กโ๐) (๐(๐+๐) โ ๐(๐ ))/๐ = (๐๐๐)โฌ(hโ0) (๐(3+โ) โ ๐(3))/โ = (๐๐๐)โฌ(hโ0) (|(3+โ) โ 3| cosโกใ(3+โ)ใโ|3 โ 3| cosโกใ(3)ใ)/โ = (๐๐๐)โฌ(hโ0) (|3 + โ โ3| cosโก(3 + โ)โ0 )/โ = (๐๐๐)โฌ(hโ0) (| โ| cosโกใ(3+โ)ใ)/โ = (๐๐๐)โฌ(hโ0) (โ cosโกใ(3 + โ)ใ)/โ = (๐๐๐)โฌ(hโ0) cosโกใ(3+โ)ใ = cosโกใ(3+0)ใ = ๐๐๐โก๐ Since LHD โ RHD โด f(x) is not differentiable at x = 3 Hence, we can say that f(x) is differentiable on R โ {๐} So, the correct answer is (B)