The maximum value of (1/x) x   is:

(A) e                            (B) ee

(C) e (1/e)                       (D) 1/e (1/e)

Slide114.JPG

Slide115.JPG
Slide116.JPG
Slide117.JPG

Go Ad-free

Transcript

Question 17 The maximum value of (1/๐‘ฅ)^๐‘ฅ is: (A) e (B) ee (C) ๐‘’^(1/๐‘’) (D) ใ€–1/๐‘’ใ€—^(1/๐‘’) Let f (๐‘ฅ) = (1/๐‘ฅ)^๐‘ฅ To find maximum value, we need to differentiate f(x) For differentiating f (๐‘ฅ), we use logarithmic differentiation f (๐‘ฅ) = (1/๐‘ฅ)^๐‘ฅ log (f(x)) = ๐’™ log (๐Ÿ/๐’™) Differentiating wrt ๐‘ฅ ๐Ÿ/(๐’‡(๐’™)) fโ€™(x) = 1โˆ™log (๐Ÿ/๐’™) + ๐’™ ร— (๐Ÿ/(๐Ÿ/๐’™)) ร— ((โˆ’๐Ÿ)/๐’™^๐Ÿ ) 1/(๐‘“(๐‘ฅ)) fโ€™(x) = log (1/๐‘ฅ) + ๐‘ฅ ร— (๐‘ฅ) ร— ((โˆ’1)/๐‘ฅ^2 ) 1/(๐‘“(๐‘ฅ)) fโ€™(x) = log (1/๐‘ฅ) + ๐‘ฅ^2 ร— ((โˆ’1)/๐‘ฅ^2 ) 1/(๐‘“(๐‘ฅ)) fโ€™(x) = log (1/๐‘ฅ) โˆ’ 1 fโ€™(x) = f(x) [logโกใ€–(1/๐‘ฅ)โˆ’1ใ€— ] Putting f (๐‘ฅ) =(1/๐‘ฅ)^๐‘ฅ fโ€™(x) = (๐Ÿ/๐’™)^๐’™ (๐ฅ๐จ๐ โกใ€–(๐Ÿ/๐’™)โˆ’๐Ÿใ€— ) Putting fโ€™(x) = 0 (1/๐‘ฅ)^๐‘ฅ (logโกใ€–(1/๐‘ฅ)โˆ’1ใ€— ) = 0 Since, there is only one critical point, so it will be point of maxima Either (๐Ÿ/๐’™)^๐’™ = 0 Since, it is an exponential function It can never be zero. Or (๐’๐’๐’ˆโกใ€–(๐Ÿ/๐’™)โˆ’๐Ÿใ€— ) = 0 log 1/๐‘ฅ = 1 Taking exponential on both sides e^logโกใ€–1/xใ€— = ๐‘’^1 1/๐‘ฅ = e ๐’™ = ๐’†^(โˆ’๐Ÿ) Putting ๐‘ฅ = 1/๐‘’ in f (x) f (๐Ÿ/๐’†) = (1/(1/๐‘’))^(1/๐‘’) f (๐Ÿ/๐’†) = ๐’†^(๐Ÿ/๐’†) So, the correct answer is (C)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo