Slide1.JPG

 

Slide2.JPG

 

Slide3.JPG

 

Slide4.JPG

 

Slide5.JPG

 

Slide6.JPG

 

Slide7.JPG Slide8.JPG

 

Slide9.JPG Slide10.JPG

Go Ad-free

Transcript

Ex 4.1, 1 Check whether the following are quadratic equations : (i) (𝑥+1)^2 = 2(x – 3) (𝑥+1)^2 = 2(x – 3) 𝒙𝟐 + 𝟏 + 𝟐𝒙 = 𝟐𝒙 – 𝟔 𝑥2 + 1+ 2𝑥 – 2𝑥 + 6 = 0 𝑥2 + 1 +6 = 0 𝑥2 + 7 = 0 𝒙𝟐 + 𝟎𝒙 + 𝟕 = 𝟎 Since , it is of the form 𝑎𝑥2 + 𝑏𝑥 + 𝑐 =0 Where 𝑎 = 1, 𝑏 = 0, 𝑐 = 7 Hence, it is a quadratic equation Ex 4.1, 1 Check whether the following are quadratic equations : (ii) x2 – 2x = (-2) (3 – x) x2 – 2x = (-2) (3 – x) x2 – 2x = (-2)3 – (–2)x x2 – 2x = –6 + 2x x2 – 2x – 2x + 6 = 0 x2 – 4x + 6 = 0 It is the form of ax2 + bx + c = 0 Where a = 1, b = – 4 , c = 6 Hence, it is a quadratic equation . Ex 4.1, 1 Check whether the following are quadratic equations : (iii) (x – 2)(x + 1) = (x – 1)(x + 3) (𝑥 – 2)(𝑥 + 1)= (𝑥 – 1)(𝑥 + 3) 𝑥 (𝑥 + 1) – 2 (𝑥 + 1) = 𝑥 (𝑥 + 3) – 1 (𝑥 + 3) 𝒙𝟐 + 𝒙 – 𝟐𝒙 – 𝟐 = 𝒙𝟐 + 𝟑𝒙 – 𝒙 – 𝟑 𝑥2 + 𝑥 – 2𝑥 – 2 – 𝑥2 – 3𝑥 + 𝑥 + 3 = 0 (𝑥2 – 𝑥2 ) + (𝑥 – 2𝑥 – 3𝑥 + 𝑥 ) – 2 + 3 = 0 0 – 3𝑥 + 1 = 0 – 𝟑𝒙 + 𝟏 = 0 Since , highest power is 1 not 2, It is not in the form of 𝑎𝑥2 + 𝑏𝑥 + 𝑐 =0 Hence, it is not a quadratic equation. Ex 4.1, 1 Check whether the following are quadratic equations : (iv) (x – 3)(2x +1) = x(x + 5) (𝑥 – 3) (2𝑥 + 1) = 𝑥 (𝑥 + 5) 𝑥 (2𝑥 + 1) – 3(2𝑥 + 1) = 𝑥 (𝑥 + 5) 𝟐𝒙𝟐 + 𝒙 – 𝟔𝒙 −𝟑 = 𝒙𝟐 + 𝟓𝒙 2𝑥2 + 𝑥 – 6𝑥 – 3 – 𝑥2 – 5𝑥 = 0 2𝑥2 – 𝑥2 +𝑥 – 6𝑥 – 5𝑥 – 3 = 0 𝒙𝟐 – 𝟏𝟎𝒙 – 𝟑 = 𝟎 Since, the equation is of the form 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 Where, a = 1, b = – 10, c = – 3 Hence it is a quadratic equation. Ex 4.1, 1 Check whether the following are quadratic equations : (v) (2x – 1)(x – 3) = (x + 5)(x – 1) (2𝑥 – 1)(𝑥 – 3)= (𝑥 + 5)(𝑥 – 1) 2𝑥 (𝑥 – 3) – 1 (𝑥 – 3) = 𝑥 (𝑥 – 1) + 5 (𝑥 – 1) 𝟐𝒙𝟐 – 𝟔𝒙 – 𝒙 + 𝟑 = 𝒙𝟐 – 𝒙 + 𝟓𝒙 – 𝟓 2𝑥2 – 6𝑥 – 𝑥 + 3 – 𝑥2 + 𝑥 – 5𝑥 + 5 = 0 2𝑥2 – 𝑥2 – 6𝑥 – 𝑥 + 𝑥 – 5𝑥 + 3 + 5 = 0 𝒙𝟐 – 𝟏𝟏𝒙 + 𝟖 = 𝟎 Since it is of the form 𝑎𝑥2 + 𝑏𝑥 + 𝑐 =0 Where a = 1, b = – 11, c = 8 Hence it is a quadratic equation. Ex 4.1, 1 Check whether the following are quadratic equations : (vi) x2 + 3x + 1 = (x – 2)2 𝑥2 + 3𝑥 + 1 = (𝑥 – 2)^2 𝑥2 +3𝑥 +1 = 𝑥2 + 4 – 4𝑥 𝑥2 + 3𝑥 + 1 – 𝑥2 – 4+ 4𝑥= 0 𝑥2 – 𝑥2 + 3𝑥 + 4𝑥 + 1 – 4 = 0 0 + 7𝑥 – 3 = 0 𝟕𝒙 – 𝟑 = 𝟎 Since , highest power is 1 not 2, It is not in the form of 𝑎𝑥2 + 𝑏𝑥 + 𝑐 =0 Hence, it is not a quadratic equation. Ex 4.1, 1 Check whether the following are quadratic equations : (vii) (x + 2)3 = 2x (x2 – 1) (x + 2)3 = 2x (x2 – 1) x3 + 23 + 3 × 𝑥 × 2(𝑥+2)=2𝑥 (x2 – 1) 𝒙𝟑 +𝟖+𝟔𝒙(𝒙+𝟐)=𝟐𝒙𝟑−𝟐𝒙 𝑥2 + 8 + 6𝑥2 + 12𝑥 = 2𝑥3 – 2𝑥 𝑥3 + 8 + 6𝑥2 + 12𝑥 – 2𝑥3 + 2𝑥 = 0 𝑥3 – 2𝑥3 + 6𝑥2 + 12𝑥 + 2𝑥 + 8 = 0 – 𝒙𝟑 + 𝟔𝒙𝟐 +𝟏𝟒𝒙 + 𝟖 = 𝟎 Since highest power is 3 and not 2, It is not in the form of 𝑎𝑥2 + 𝑏𝑥 + 𝑐 =0 Hence, it is not a quadratic equation Ex 4.1, 1 Check whether the following are quadratic equations : (viii) x3 – 4x2 – x + 1 = (x – 2)3 𝑥3 – 4𝑥2 – 𝑥+ 1 = (𝑥 – 2)^3 𝑥3 – 4𝑥2 – 𝑥+1 = 𝑥3 –23 −3×𝑥×2(x−2) 𝒙𝟑 – 𝟒𝒙𝟐 – 𝒙+𝟏 = 𝒙𝟑 – 𝟖 – 𝟔𝒙 (𝒙 – 𝟐) 𝑥3 – 4𝑥2 – 𝑥 +1 = 𝑥3 – 8 – 6𝑥2 + 12 𝑥 𝑥3 – 4𝑥2 – 𝑥 + 1 – 𝑥3 + 8 + 6𝑥2 – 12𝑥 = 0 𝑥3 – 𝑥3 – 4𝑥2 + 6𝑥2 – 𝑥 – 12𝑥 + 1 + 8 = 0 0 + 2𝑥2 – 13𝑥 + 9 = 0 𝟐𝒙𝟐 – 𝟏𝟑𝒙 + 𝟗 = 𝟎 It is of the form ax2 + bx + c = 0 Where a = 2, b = – 13 and c = 9 Hence, it is a quadratic equation

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo