Question 33 The perimeters of two similar triangles are 26 cm and 39 cm. The ratio of their areas will be (a) 2 : 3 (b) 6 : 9 (c) 4 : 6 (d) 4 : 9
Let ΔABC and ΔPQR be two similar triangles
Now,
Ratio of perimeter of two similar triangles is equal to ratio of their corresponding sides
∴ (𝑷𝒆𝒓𝒊𝒎𝒆𝒕𝒆𝒓 Δ 𝑨𝑩𝑪)/(𝑷𝒆𝒓𝒊𝒎𝒆𝒕𝒆𝒓 Δ 𝑷𝑸𝑹)=𝑨𝑩/𝑷𝑸
26/39=𝐴𝐵/𝑃𝑄
2/3=𝐴𝐵/𝑃𝑄
𝑨𝑩/𝑷𝑸=𝟐/𝟑
We know that
Ratio of area of similar triangles is equal to square of ratio of its corresponding sides
Therefore,
(𝐴𝑟𝑒𝑎 𝑜𝑓" " ∆𝐴𝐵𝐶)/(𝐴𝑟𝑒𝑎 𝑜𝑓" " ∆𝑃𝑄𝑅)=(𝐴𝐵/𝑃𝑄)^2
Putting values
(𝐴𝑟𝑒𝑎 𝑜𝑓" " ∆𝐴𝐵𝐶)/(𝐴𝑟𝑒𝑎 𝑜𝑓" " ∆𝑃𝑄𝑅)=(2/3)^2
(𝑨𝒓𝒆𝒂 𝒐𝒇" " ∆𝑨𝑩𝑪)/(𝑨𝒓𝒆𝒂 𝒐𝒇" " ∆𝑷𝑸𝑹)=𝟒/𝟗
Hence, the required ratio is 4 : 9
So, the correct answer is (d)
Made by
Davneet Singh
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo
Hi, it looks like you're using AdBlock :(
Displaying ads are our only source of revenue. To help Teachoo create more content, and view the ad-free version of Teachooo... please purchase Teachoo Black subscription.
Please login to view more pages. It's free :)
Teachoo gives you a better experience when you're logged in. Please login :)
Solve all your doubts with Teachoo Black!
Teachoo answers all your questions if you are a Black user!