If x = a sec πœƒ, y = b tan πœƒ, then (d 2 y)/(dx 2 ) at θ = π/6 is :

(a) (-3√3 b)/a 2  (b) (-2√3 b)/a
(c) (-3√3 b)/a  (d) (-b)/(3√3 a 2 )

This question is inspired from Question 31 (Choice 2) - CBSE Class 12 Sample Paper for 2021 Boards

Slide55.JPG

Slide56.JPG
Slide57.JPG
Slide58.JPG
Slide59.JPG

Go Ad-free

Transcript

Question 22 If x = a sec πœƒ, y = b tan πœƒ, then (𝑑^2 𝑦)/(𝑑π‘₯^2 ) at πœƒ = πœ‹/6 is : (a) (βˆ’3√3 𝑏)/π‘Ž^2 (b) (βˆ’2√3 𝑏)/π‘Ž (c) (βˆ’3√3 𝑏)/π‘Ž (d) (βˆ’π‘)/(3√3 π‘Ž^2 ) Given π‘₯=π‘Ž sec β‘πœƒ, 𝑦=𝑏 tanβ‘πœƒ 𝑑𝑦/𝑑π‘₯ = 𝑑𝑦/𝑑π‘₯ Γ— π‘‘πœƒ/π‘‘πœƒ 𝑑𝑦/𝑑π‘₯ = 𝑑𝑦/π‘‘πœƒ Γ— π‘‘πœƒ/𝑑π‘₯ π’…π’š/𝒅𝒙 = (π’…π’š/π’…πœ½)/(𝒅𝒙/π’…πœ½) Calculating π’…π’š/π’…πœ½ 𝑦 = 𝑏 tanβ‘πœƒ 𝑑𝑦/π‘‘πœƒ = 𝑑(𝑏 tanβ‘πœƒ )/π‘‘πœƒ 𝑑𝑦/π‘‘πœƒ = 𝑏 𝑑(tanβ‘πœƒ )/π‘‘πœƒ π’…π’š/π’…πœ½ = 𝑏 .sec^2β‘πœƒ Calculating 𝒅𝒙/π’…πœ½ π‘₯=π‘Ž sec β‘πœƒ 𝑑π‘₯/π‘‘πœƒ = 𝑑(π‘Ž sec β‘πœƒ)/π‘‘πœƒ 𝑑π‘₯/π‘‘πœƒ = π‘Ž 𝑑(sec β‘πœƒ)/π‘‘πœƒ 𝒅𝒙/π’…πœ½ = π‘Ž (secβ‘πœƒ.tanβ‘πœƒ ) 𝑑𝑦/𝑑π‘₯ = (𝑏 secβ‘πœƒ)/(π‘Ž tanβ‘πœƒ ) 𝑑𝑦/𝑑π‘₯ = (𝑏 . 1/cosβ‘πœƒ )/(π‘Ž (sinβ‘πœƒ/cosβ‘πœƒ ) ) 𝑑𝑦/𝑑π‘₯ = 𝑏 Γ— 1/cosβ‘πœƒ Γ— cosβ‘πœƒ/γ€–a sinγ€—β‘πœƒ 𝑑𝑦/𝑑π‘₯ = 𝑏/π‘Ž (1/sinβ‘πœƒ ) π’…π’š/𝒅𝒙 = 𝒃/𝒂 𝒄𝒐𝒔𝒆𝒄 𝜽 Now, (𝒅^𝟐 π’š)/(𝒅𝒙^𝟐 ) = 𝒃/𝒂 (𝐝(𝒄𝒐𝒔𝒆𝒄 𝜽))/𝒅𝒙 (𝑑^2 𝑦)/(𝑑π‘₯^2 ) = 𝑏/π‘Ž (d(π‘π‘œπ‘ π‘’π‘ πœƒ))/𝑑θ ×𝑑θ/𝑑π‘₯ (𝑑^2 𝑦)/(𝑑π‘₯^2 ) = 𝑏/π‘Ž (d(π‘π‘œπ‘ π‘’π‘ πœƒ))/𝑑θ Γ—πŸ/(𝒅𝒙/π’…πœ½) (𝑑^2 𝑦)/(𝑑π‘₯^2 ) = 𝑏/π‘Ž (βˆ’π‘π‘œπ‘ π‘’π‘ ΞΈ cot⁑θ) Γ—πŸ/(𝒂 𝒔𝒆𝒄 ΞΈ 𝒕𝒂𝒏 ΞΈ) (𝑑^2 𝑦)/(𝑑π‘₯^2 ) = (βˆ’π‘)/π‘Ž^2 1/sin⁑〖θ γ€— cot⁑θ Γ— 𝒄𝒐𝒔 ΞΈ 𝒄𝒐𝒕 ΞΈ (𝒅^𝟐 π’š)/(𝒅𝒙^𝟐 ) = (βˆ’π’ƒ)/𝒂^𝟐 〖𝒄𝒐𝒕〗^πŸ‘β‘πœ½ We need to find (𝑑^2 𝑦)/(𝑑π‘₯^2 ) π‘Žπ‘‘ π‘₯ = πœ‹/6 Putting π‘₯ = 𝝅/πŸ” (𝑑^2 𝑦)/(𝑑π‘₯^2 ) = (βˆ’π‘)/π‘Ž^2 γ€–π‘π‘œπ‘‘γ€—^3β‘γ€–πœ‹/6γ€— (𝑑^2 𝑦)/(𝑑π‘₯^2 ) = (βˆ’π‘)/π‘Ž^2 (√3)^3 (𝑑^2 𝑦)/(𝑑π‘₯^2 ) = (βˆ’π‘)/π‘Ž^2 3√3 (𝒅^𝟐 π’š)/(𝒅𝒙^𝟐 ) = (βˆ’πŸ‘βˆšπŸ‘ 𝒃)/𝒂^𝟐 So, the correct answer is (A)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo