sin (tan−1x), where |x| < 1, is equal to:

(a) x/√(1 - x 2 )    (b) 1/√(1 - x 2 )
(c) 1/√(1 + x 2 )   (d) x/√(1 + x 2 )

This question is inspired from Misc 15 (MCQ) - Chapter 2 Class 12 - Inverse Trigonometric Functions

Slide25.JPG

Slide26.JPG
Slide27.JPG
Slide28.JPG

Go Ad-free

Transcript

Question 10 sin (tanβˆ’1x), where |x| < 1, is equal to: (a) π‘₯/√(1 βˆ’ π‘₯^2 ) (b) 1/√(1 βˆ’γ€– π‘₯γ€—^2 ) (c) 1/√(1 + π‘₯^2 ) (d) π‘₯/√(1 + π‘₯^2 ) Let a = tanβˆ’1 x tan a = x We need to find sin a. For this first we calculate sec a and cos a We know that sec2 a = 1 + tan2 a sec a = √(1+π‘‘π‘Žπ‘›2 a) sec a = √(1+π‘₯2) 1/cosβ‘π‘Ž = √(1+π‘₯2) 1/√(1 + π‘₯^2 ) = cosβ‘π‘Ž 𝒄𝒐𝒔⁑𝒂 = 𝟏/√(𝟏 + 𝒙^𝟐 ) We know that sin a = √("1 – cos2 a" ) sin a = √("1 –" (1/√(1 + π‘₯^2 ))^2 ) sin a = √("1 –" 1/(1 + π‘₯2)) sin a = √((1 + π‘₯2 βˆ’ 1)/(1 + π‘₯2)) = √((π‘₯2 )/(1 + π‘₯2)) = √(π‘₯^2 )/√(γ€–1 + π‘₯γ€—^2 ) = π‘₯/√(γ€–1 + π‘₯γ€—^2 ) sin a = π‘₯/√(γ€–1 + π‘₯γ€—^2 ) a = sinβˆ’1 (𝒙/√(γ€–πŸ + 𝒙〗^𝟐 )) Now solving sin(tanβˆ’1 x) = sin (a) = sin ("sinβˆ’1 " (𝒙/√(γ€–πŸ + 𝒙〗^𝟐 ))) = π‘₯/√(γ€–1 + π‘₯γ€—^2 ) So, the correct answer is (d)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo