The value of k (k < 0) for which the function f defined as
f (x)={((1 -cos⁡kx)/(x sin⁡x ),x≠0  1/2,x=0)┤ is continuous at x = 0 is :

(a) ±  1  (b) −1      (c) ±  1/2  (d) 1/2

This question is inspired from -   Question 21 - CBSE Class 12 Sample Paper for 2021 Boards

Slide3.JPG

Slide4.JPG
Slide5.JPG
Slide6.JPG

Go Ad-free

Transcript

Question 2 The value of k (k < 0) for which the function f defined as 𝑓 (π‘₯)={β–ˆ((1 βˆ’cosβ‘π‘˜π‘₯)/(π‘₯ sin⁑π‘₯ ),π‘₯β‰ 0@1/2, π‘₯=0)─ is continuous at x = 0 is : (a) Β± 1 (b) βˆ’1 (c) Β± 1/2 (d) 1/2 Given that function is continuous at x = 0 𝑓(π‘₯) is continuous at x = 0 i.e. (π₯𝐒𝐦)┬(π±β†’πŸŽ) 𝒇(𝒙)=𝒇(𝟎) Limit at x β†’ 0 (π‘™π‘–π‘š)┬(π‘₯β†’0) f(x) = (π‘™π‘–π‘š)┬(β„Žβ†’0) f(h) = lim┬(hβ†’0) (1 βˆ’ cosβ‘π‘˜β„Ž)/(β„Ž (sinβ‘β„Ž) ) = lim┬(hβ†’0) (𝟐 〖𝐬𝐒𝐧〗^πŸβ‘γ€–π’Œπ’‰/πŸγ€—)/(β„Ž (sinβ‘β„Ž)) = lim┬(hβ†’0) (2 sin^2β‘γ€–π‘˜β„Ž/2γ€—)/1 Γ—1/(β„Ž (sinβ‘β„Ž)) = (π’π’Šπ’Ž)┬(π‘β†’πŸŽ) (𝟐 γ€–π’”π’Šπ’γ€—^πŸβ‘γ€–π’Œπ’‰/πŸγ€—)/(π’Œπ’‰/𝟐)^𝟐 Γ— (π’Œπ’‰/𝟐)^𝟐/(𝒉 (π’”π’Šπ’β‘π’‰)) = lim┬(hβ†’0) (2 sin^2β‘γ€–π‘˜β„Ž/2γ€—)/(π‘˜β„Ž/2)^2 Γ— (π‘˜^2 β„Ž^2)/(4β„Ž (sinβ‘β„Ž)) = lim┬(hβ†’0) sin^2β‘γ€–π‘˜β„Ž/2γ€—/(π‘˜β„Ž/2)^2 Γ— (π’Œ^𝟐 𝒉)/(𝟐(π’”π’Šπ’β‘π’‰)) = π’Œ^𝟐/𝟐 lim┬(hβ†’0) sin^2β‘γ€–π‘˜β„Ž/2γ€—/(π‘˜β„Ž/2)^2 Γ— β„Ž/sinβ‘β„Ž = π‘˜^2/2 lim┬(hβ†’0) sin^2β‘γ€–π‘˜β„Ž/2γ€—/(π‘˜β„Ž/2)^2 Γ—lim┬(hβ†’0) β„Ž/sinβ‘β„Ž = π‘˜^2/2 Γ— 1 Γ— 1 = π’Œ^𝟐/𝟐 Now, (π₯𝐒𝐦)┬(π±β†’πŸŽ) 𝒇(𝒙)=𝒇(𝟎) π‘˜^2/2 = 1/2 π‘˜^2 =1 π’Œ =±𝟏 But, given that k < 0 Thus, only value is k = βˆ’1 So, the correct answer is (b)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo