Misc 1 - Chapter 13 Class 11 Limits and Derivatives - Part 9

Misc 1 - Chapter 13 Class 11 Limits and Derivatives - Part 10
Misc 1 - Chapter 13 Class 11 Limits and Derivatives - Part 11

Go Ad-free

Transcript

Misc 1 Find the derivative of the following functions from first principle: (iv) cos (x−π/8) Let f (x) = cos (x−π/8) We need to find Derivative of f(x) We know that f’(x) = (𝑙𝑖𝑚)┬(ℎ→0) 𝑓⁡〖(𝑥 + ℎ) − 𝑓(𝑥)〗/ℎ Here, f (x) = cos (x−π/8) So, f (x + h) = cos ((x+h)−π/8) Putting values f’(x) = lim┬(h→0)⁡〖("cos " ((x + h) − π/8) −" cos " (x − π/8))/h〗 Using cos A – cos B = – 2 sin ((𝐴 + 𝐵)/2) . sin ((𝐴 − 𝐵)/2) = lim┬(h→0)⁡〖("cos " (𝑥 − π/8 +ℎ) −" cos " (x − π/8))/h〗 = lim┬(h→0)⁡〖〖−2 sin〗⁡〖 (((𝑥 − 𝜋/8 + ℎ) + (𝑥 − 𝜋/8 ))/2) . sin⁡(((𝑥 − 𝜋/8 + ℎ) − (𝑥 − 𝜋/8 ))/2) 〗/h〗 = lim┬(h→0)⁡〖(−2 sin⁡〖 ((2(𝑥 − ( 𝜋)/8 )+ ℎ)/2) . sin⁡(ℎ/2) 〗)/h〗 = lim┬(h→0)⁡〖(− (sin⁡〖 ((2(𝑥 − ( 𝜋)/8 ) + ℎ )/2) . sin⁡(ℎ/2) 〗 ))/(ℎ/2)〗 = lim┬(h→0)⁡〖〖− sin 〗⁡((2(𝑥 − 𝜋/8 ) + ℎ)/2)×sin⁡〖 ℎ/2〗/(( ℎ)/2)〗 = lim┬(h→0)⁡〖〖− sin 〗⁡〖((2(𝑥 − 𝜋/8 )+ ℎ))/2〗×(𝐥𝐢𝐦)┬(𝐡→𝟎) 𝒔𝒊𝒏⁡〖 𝒉/𝟐〗/(( 𝒉)/𝟐)〗 = lim┬(h→0)⁡〖〖− sin 〗⁡〖((2(𝑥 − 𝜋/8 )+ ℎ))/2〗×𝟏〗 = lim┬(h→0)⁡〖〖− sin 〗⁡((2(𝑥 − 𝜋/8 )+ ℎ)/2) 〗 Putting h = 0 = 〖− sin 〗⁡((2(𝑥 − 𝜋/8 )+ 0)/2) = 〖− sin 〗⁡(2(𝑥 − 𝜋/8 )/2) = 〖− 𝐬𝐢𝐧 〗⁡(𝒙 − 𝝅/𝟖 ) Using (𝑙𝑖𝑚)┬(𝑥→0)⁡〖 𝑠𝑖𝑛⁡𝑥/𝑥〗=1 Replacing x by ℎ/2 ⇒ (𝑙𝑖𝑚)┬(ℎ→0) 𝑠𝑖𝑛⁡〖 ℎ/2〗/(( ℎ)/2) = 1

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo