Ex 12.2
Ex 12.2, 2
Ex 12.2, 3
Ex 12.2, 4 (i) Important
Ex 12.2, 4 (ii)
Ex 12.2, 4 (iii) Important
Ex 12.2, 4 (iv)
Ex 12.2, 5
Ex 12.2, 6
Ex 12.2, 7 (i) Important
Ex 12.2, 7 (ii)
Ex 12.2, 7 (iii) Important
Ex 12.2, 8
Ex 12.2, 9 (i)
Ex 12.2, 9 (ii) Important
Ex 12.2, 9 (iii)
Ex 12.2, 9 (iv) Important
Ex 12.2, 9 (v)
Ex 12.2, 9 (vi) You are here
Ex 12.2, 10 Important
Ex 12.2, 11 (i)
Ex 12.2, 11 (ii) Important
Ex 12.2, 11 (iii) Important
Ex 12.2, 11 (iv)
Ex 12.2, 11 (v) Important
Ex 12.2, 11 (vi)
Ex 12.2, 11 (vii) Important
Last updated at Dec. 16, 2024 by Teachoo
Ex 12.2, 9 Find the derivative of (vi) f(x) = 2/(x + 1) – x2/(3x − 1) Let f (x) = 2/(x + 1) – x2/(3x − 1) Let f1 (x) = 2/(x + 1) & f2 (x) = x2/(3x − 1) ∴ f(x) = f1(x) – f2 (x) So, f’(x) = (f1(x) – f2(x))’ f’(x) = f’1(x) – f’2(x) Finding f1‘(x) f1 (x) = 2/(𝑥 + 1) Let u = 2 & v = x + 1 ∴ f1(x) = 𝑢/𝑣 Now, f1’(x) = (𝑢/𝑣)^′ f1’(x) = (𝑢^′ 𝑣 −〖 𝑣〗^′ 𝑢)/𝑣^2 u = 2 u’ = 0 v = x + 1 v’ = 1 + 0 = 1 f’1(x) = (𝑢/𝑣)^′ = (𝑢^′ 𝑣 −〖 𝑣〗^′ 𝑢)/𝑣^2 = (0(𝑥 + 1) −1 (2))/(𝑥 + 1)2 = (−2)/〖(𝑥 + 1)〗^2 Hence, f1’ (x) = (−2)/(𝑥 + 1)2 Finding f2‘(x) f2 (x) = 𝑥2/(3𝑥 − 1) Let u = x2 & v = 3x – 1 Now, f2’(x) = (𝑢/𝑣)^′ f2’(x) = (𝑢^′ 𝑣 −〖 𝑣〗^′ 𝑢)/𝑣^2 Finding u’ & v’ u = x2 u’ = 2x2 – 1 = 2x & v = 3x – 1 v’ = 3(1) – 0 = 3 f’2(x) = (𝑢/𝑣)^′ (xn)’ = nxn – 1 & (a)’ = 0 where a is constant = (𝑢^′ 𝑣 −〖 𝑣〗^′ 𝑢)/𝑣^2 = (2𝑥(3𝑥 − 1) − 3 (𝑥2))/(3𝑥 − 1)2 = (6𝑥2 − 2𝑥 − 3𝑥2)/〖(3𝑥 − 1)〗^2 = (3𝑥2 − 2𝑥 )/〖(3𝑥 − 1)〗^2 = (𝑥(3𝑥 − 2))/〖(3𝑥 − 1)〗^2 Hence f’2(x) = (𝑥 (3𝑥 − 2))/(3𝑥 − 1)2 Now f’ (x) = f1’(x) – f2’ (x) = (−𝟐)/(𝒙 + 𝟏)𝟐 – (𝒙(𝟑𝒙 − 𝟐))/(𝟑𝒙 − 𝟏)𝟐