Slide36.JPG

Slide37.JPG
Slide38.JPG
Slide39.JPG
Slide40.JPG

Go Ad-free

Transcript

Ex 12.2, 9 (Method 1) Find the derivative of (iii) x–3 (5 + 3x) Let f(x) = x –3 (5 + 3x) Let u = x–3 & v = 5 + 3x ∴ f(x) = uv So, f’(x) = (uv)’ f’(x) = u’v + v’u Finding u’ & v’ u = x – 3 u’ = –3x–3 – 1 = –3x–4 v = 5 + 3x v’ = 0 + 3 = 3 Now, f’(x) = (uv)’ = u’v + v’u = –3x– 4 (5 + 3x) + 3 (x–3) = –15x–4 – 9x–4 + 1 + 3x –3 (xn)’ = nxn – 1 & (a)’ = 0 where a is constant = –15x–4 – 9x–3 + 3x –3 = –15x–4 – 6x–3 = (−15)/𝑥^4 – 6/𝑥^3 = −3 [5/𝑥^4 +2/𝑥^3 ] = −3 [(5 + 2𝑥)/𝑥^4 ] = (−𝟑)/𝒙^𝟒 (5 + 2x) Hence, f’(x) = (−3)/𝑥^4 (5 + 2x) Ex 12.2, 9 (Method 2) Find the derivative of (iii) x–3 (5 + 3x) 𝑥^(−3) (5+3𝑥) = (5 + 3𝑥)/𝑥^3 = 5/𝑥^3 + 3𝑥/𝑥^3 = 5/𝑥^3 + 3/𝑥^2 = 〖5𝑥〗^(−3) + 〖3𝑥〗^(−2) Differentiating w.r.t.x (〖5𝑥〗^(−3) " + " 〖3𝑥〗^(−2) )^′ = 5 [−3𝑥^(−4) ] + 3 [−2𝑥^(−3) ] = −3 [5/𝑥^4 +2/𝑥^3 ] = −3 [(5 + 2𝑥)/𝑥^4 ] = (−𝟑)/𝒙^𝟒 (5 + 2x)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo