Ex 12.2
Ex 12.2, 2
Ex 12.2, 3
Ex 12.2, 4 (i) Important
Ex 12.2, 4 (ii)
Ex 12.2, 4 (iii) Important
Ex 12.2, 4 (iv)
Ex 12.2, 5
Ex 12.2, 6
Ex 12.2, 7 (i) Important
Ex 12.2, 7 (ii)
Ex 12.2, 7 (iii) Important
Ex 12.2, 8
Ex 12.2, 9 (i)
Ex 12.2, 9 (ii) Important You are here
Ex 12.2, 9 (iii)
Ex 12.2, 9 (iv) Important
Ex 12.2, 9 (v)
Ex 12.2, 9 (vi)
Ex 12.2, 10 Important
Ex 12.2, 11 (i)
Ex 12.2, 11 (ii) Important
Ex 12.2, 11 (iii) Important
Ex 12.2, 11 (iv)
Ex 12.2, 11 (v) Important
Ex 12.2, 11 (vi)
Ex 12.2, 11 (vii) Important
Last updated at May 7, 2024 by Teachoo
Ex 12.2, 9 Find the derivative of (ii) (5x3 + 3x – 1) (x – 1) Let f(x) = (5x3 + 3x – 1) (x- 1) Let u = 5x3 + 3x – 1 & v = x – 1 ∴ f(x) = uv So, f’(x) = (uv)’ f’(x) = u’v + v’u (xn)’ = nxn – 1 & (a)’ = 0 where a is constant Finding u’ & v’ u = 5x3 + 3x – 1 u’ = 5(3x2) + 3(1) – 0 = 15x2 + 3 v = x – 1 v’ = 1 – 0 = 1 f’(x) = u’v + v’u = (15x2 + 3) (x – 1) + (1) (5x3 + 3x – 1) = 15x2 (x – 1) + 3 (x – 1) + 5x3 + 3x – 1 = 15x3 – 15x2 + 3x – 3 + 5x3 + 3x – 1 (xn)’ = nxn – 1 & (a)’ = 0 where a is constant = 15x3 + 5x3 – 15x2 + 3x + 3x – 3 – 1 = 20x3 – 15x2 + 6x – 4 Hence f’(x) = 20x3 – 15x2 + 6x – 4