Slide15.JPG

Slide16.JPG
Slide17.JPG

Go Ad-free

Transcript

Ex 12.2, 4 Find the derivative of the following functions from first principle. (iv) (π‘₯ + 1)/(π‘₯ βˆ’ 1) Let f (x) = (π‘₯ + 1)/(π‘₯ βˆ’ 1) We need to find Derivative of f(x) i.e. f’ (x) We know that f’(x) = lim┬(hβ†’0) f⁑〖(x + h) βˆ’ f(x)γ€—/h Here, f (x) = (π‘₯ + 1)/(π‘₯ βˆ’ 1) So, f (x + h) = ((π‘₯ + β„Ž) + 1)/((π‘₯ + β„Ž) βˆ’ 1) Ex 12.2, 4 Find the derivative of the following functions from first principle. (iv) (π‘₯ + 1)/(π‘₯ βˆ’ 1) Let f (x) = (π‘₯ + 1)/(π‘₯ βˆ’ 1) We need to find Derivative of f(x) i.e. f’ (x) We know that f’(x) = lim┬(hβ†’0) f⁑〖(x + h) βˆ’ f(x)γ€—/h Here, f (x) = (π‘₯ + 1)/(π‘₯ βˆ’ 1) So, f (x + h) = ((π‘₯ + β„Ž) + 1)/((π‘₯ + β„Ž) βˆ’ 1) Putting values f’(x) = lim┬(hβ†’0)⁑〖([((π‘₯ + β„Ž) + 1)/(π‘₯ + β„Ž βˆ’ 1)] βˆ’[ (π‘₯ + 1)/(π‘₯ βˆ’ 1)])/hγ€— = lim┬(hβ†’0)⁑〖((π‘₯ + β„Ž + 1)/(π‘₯ + β„Ž βˆ’ 1) βˆ’ (π‘₯ + 1)/(π‘₯ βˆ’ 1))/hγ€— = lim┬(hβ†’0)⁑〖(((π‘₯ βˆ’ 1)(π‘₯ + β„Ž + 1) βˆ’ (π‘₯ + 1)( π‘₯ + β„Ž βˆ’ 1))/(( π‘₯ + β„Ž βˆ’ 1 ) (π‘₯ βˆ’ 1)))/β„Žγ€— = lim┬(hβ†’0)⁑〖((π‘₯ βˆ’ 1) ((π‘₯ + 1) + β„Ž) βˆ’ (π‘₯ + 1)( (π‘₯ βˆ’ 1) + β„Ž))/(β„Ž( π‘₯ + β„Ž βˆ’ 1 ) (π‘₯ βˆ’ 1))γ€— = lim┬(hβ†’0)⁑〖((π‘₯ βˆ’ 1)(π‘₯ + 1) + (π‘₯ βˆ’1)β„Ž βˆ’ (π‘₯ + 1)(π‘₯ βˆ’ 1) βˆ’ (π‘₯ + 1) β„Ž)/(β„Ž( π‘₯ + β„Ž βˆ’ 1 ) (π‘₯ βˆ’ 1))γ€— = lim┬(hβ†’0)⁑〖((π‘₯2 βˆ’ 1) + π‘₯β„Ž βˆ’ (π‘₯2 βˆ’ 1) βˆ’ π‘₯β„Ž βˆ’ β„Ž)/(β„Ž( π‘₯ + β„Ž βˆ’ 1 ) (π‘₯ βˆ’ 1))γ€— = (π‘™π‘–π‘š)┬(β„Žβ†’0)⁑〖(βˆ’ 2β„Ž )/(β„Ž (π‘₯ + β„Ž βˆ’ 1) (π‘₯ βˆ’ 1))γ€— = lim┬(hβ†’0)⁑〖(βˆ’2)/((π‘₯ + β„Ž βˆ’ 1) (π‘₯ βˆ’ 1))γ€— Putting h = 0 = (βˆ’2)/((π‘₯ + 0 βˆ’ 1)(π‘₯ βˆ’ 1)) = (βˆ’2)/((π‘₯ βˆ’ 1) (π‘₯ βˆ’ 1)) = (βˆ’2)/(π‘₯ βˆ’ 1)^2 Hence, f’(x) = (βˆ’πŸ)/(𝒙 βˆ’ 𝟏)^𝟐

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo