Example 22 (ii) - Chapter 12 Class 11 Limits and Derivatives
Last updated at April 16, 2024 by Teachoo
Examples
Example 1 (ii)
Example 1 (iii)
Example 2 (i)
Example 2 (ii) Important
Example 2 (iii) Important
Example 2 (iv)
Example 2 (v)
Example 3 (i) Important
Example 3 (ii) Important
Example 4 (i)
Example 4 (ii) Important
Example 5
Example 6
Example 7 Important
Example 8
Example 9
Example 10 Important
Example 11
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16
Example 17 Important
Example 18
Example 19 (i) Important
Example 19 (ii)
Example 20 (i)
Example 20 (ii) Important
Example 21 (i)
Example 21 (ii) Important
Example 22 (i)
Example 22 (ii) Important You are here
Last updated at April 16, 2024 by Teachoo
Example 22 Find the derivative of (ii) (π₯ + πππ β‘π₯)/π‘ππβ‘π₯ Let f(x) = (π₯ + πππ β‘π₯)/π‘ππβ‘π₯ Let u = x + cos x & v = tan x β΄ f(x) = π’/π£ So, fβ(x) = (π’/π£)^β² Using quotient rule fβ(x) = (π’^β² π£ βγ π£γ^β² π’)/π£^2 Finding uβ & vβ u = x + cos x uβ = (x + cos x)β = 1 β sin x v = tan x vβ = sec2x Now, fβ(x) = (π’^β² π£ βγ π£γ^β² π’)/π£^2 = ((π βγ π¬π’π§γβ‘γπ) (πππ§β‘γπ) β πππππ (π + γ ππ¨π¬γβ‘γπ)γ γ γ)/γ(πππ§β‘γπ)γγ^π (xn)β = n xn β 1 Derivative of cos x = βsin x Derivative of tan x = sec2x (Calculated in Example 17)