Miscellaneous
Misc 2 (i)
Misc 2 (ii) Important You are here
Misc 2 (iii) Important
Misc 2 (iv)
Misc 2 (v)
Misc 2 (vi) Important
Misc 3
Misc 4 Important
Misc 5
Misc 6 Important
Misc 7 Important
Misc 8
Misc 9
Misc 10 Important
Question 1
Question 2 Important
Question 3 Important
Question 4
Question 5 Important
Question 6 Important
Last updated at April 16, 2024 by Teachoo
Misc 2 In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an Example (ii) If A ⊂ B and B ∈ C, then A ∈ C Let A = {2}, Since, A ⊂ B ,element of set A i.e. 2 should be an element of set B Hence, taking B = {0,2} Also, B ∈ C, i.e. whole set B is an element of set C Taking C = {1,{0,2},3} ⊂ - is a subset A ⊂ B if all elements of A are in B ∈ - (belongs to) element in set We have to prove that A ∈ C But, {2} ∉ C As {2} is not element of C ⇒ Hence A ∉ C So, given Statement is False