Slide10.JPG

Slide11.JPG

Go Ad-free

Transcript

Misc 2 For each of the exercise given below , verify that the given function (π‘–π‘šπ‘π‘™π‘–π‘π‘–π‘‘ π‘œπ‘Ÿ 𝑒π‘₯𝑝𝑙𝑖𝑐𝑖𝑑) is a solution of the corresponding differential equation . (iii) 𝑦=π‘₯ sin⁑3π‘₯ : (𝑑^2 𝑦)/(𝑑π‘₯^2 )+9π‘¦βˆ’6 cos⁑〖3π‘₯=0γ€— 𝑦=π‘₯ sin⁑3π‘₯ Differentiating w.r.t x 𝑦^β€²=(π‘₯ 𝑠𝑖𝑛⁑3π‘₯ )^β€² 𝑦^β€²=π‘₯^β€² sin⁑3π‘₯+π‘₯(sin⁑3π‘₯)β€² 𝑦^β€²=sin⁑3π‘₯+π‘₯Γ—3 cos⁑3π‘₯ π’š^β€²=π’”π’Šπ’β‘πŸ‘π’™+πŸ‘π’™ π’„π’π’”β‘πŸ‘π’™ Differentiating again w.r.t. x 𝑦^β€²β€²=(sin⁑3π‘₯ )^β€²+(3π‘₯ cos⁑3π‘₯ )^β€² 𝑦^β€²β€²=3 cos⁑3π‘₯+γ€–3(π‘₯)γ€—^β€² cos⁑3π‘₯+3π‘₯ (cos⁑3π‘₯ )^β€² 𝑦^β€²β€²=3 cos⁑3π‘₯+3 cos⁑3π‘₯+3π‘₯(βˆ’3 sin⁑3π‘₯) π’š^β€²β€²=πŸ” π’„π’π’”β‘πŸ‘π’™βˆ’πŸ—π’™ π’”π’Šπ’β‘πŸ‘π’™ Putting 𝑦=π‘₯ sin⁑3π‘₯ 𝑦^β€²β€²=6 cos⁑3π‘₯βˆ’9𝑦 π’š^β€²β€²+πŸ—π’šβˆ’πŸ” π’„π’π’”β‘πŸ‘π’™=𝟎 Thus, Given Function is a solution of the Differential Equation

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo