Misc 2 (ii) - Chapter 9 Class 12 Differential Equations
Last updated at Dec. 16, 2024 by Teachoo
Miscellaneous
Misc 1 (ii)
Misc 1 (iii) Important
Misc 2 (i)
Misc 2 (ii) Important You are here
Misc 2 (iii)
Misc 2 (iv) Important
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11
Misc 12 Important
Misc 13 (MCQ)
Misc 14 (MCQ) Important
Misc 15 (MCQ)
Question 1
Question 2 Important
Question 3 Important
Last updated at Dec. 16, 2024 by Teachoo
Misc 2 For each of the exercise given below , verify that the given function (ππππππππ‘ ππ ππ₯ππππππ‘) is a solution of the corresponding differential equation . (ii) π¦=π^π₯ (π cosβ‘γπ₯+π sinβ‘π₯ γ ) : (π^2 π¦)/(ππ₯^2 )β2 ππ¦/ππ₯+2π¦=0 π¦=π^π₯ (π cosβ‘γπ₯+π sinβ‘π₯ γ ) : Differentiating w.r.t. x π¦^β²=[π^π₯ (π cosβ‘γπ₯+π sinβ‘π₯ γ )]^β² π¦^β²=γ(πγ^π₯)β² (π cosβ‘γπ₯+π sinβ‘π₯ γ )+π^π₯ (π cosβ‘γπ₯+π sinβ‘π₯ γ )β² π¦^β²=π^π (π πππβ‘γπ+π πππβ‘π γ )+π^π₯ (βπ sinβ‘γπ₯+π cosβ‘π₯ γ ) Putting π¦=π^π₯ (π πππ β‘γπ₯+π π ππβ‘π₯ γ ) : π¦^β²=π+π^π₯ (βπ sinβ‘γπ₯+π cosβ‘π₯ γ ) π^β²βπ=π^π (βπ πππβ‘γπ+π πππβ‘π γ ) Differentiating again w.r.t x π¦^β²β²βπ¦^β²=[π^π₯ (βπ sinβ‘γπ₯+π cosβ‘π₯ γ )]^β² π¦^β²β²βπ¦^β²=γ(πγ^π₯)β²(βπ sinβ‘γπ₯+π cosβ‘π₯ γ )+π^π₯ (βπ sinβ‘γπ₯+π cosβ‘π₯ γ )β² π¦^β²β²βπ¦^β²=π^π₯ (βπ sinβ‘γπ₯+π cosβ‘π₯ γ )+π^π₯ (βπ cosβ‘γπ₯βπ siπβ‘π₯ γ ) π¦^β²β²βπ¦^β²=π^π₯ (βπ sinβ‘γπ₯+π cosβ‘π₯ γ )βπ^π₯ (π cosβ‘γπ₯+π siπβ‘π₯ γ ) Putting π¦=π^π₯ (π πππ β‘γπ₯+π π ππβ‘π₯ γ ) π^β²β²βπ^β²=π^π (βπ πππβ‘γπ+π πππβ‘π γ )βπ Putting π¦^β²βπ¦=π^π₯ (βπ π ππβ‘γπ₯+π πππ β‘π₯ γ ) from (1) π^β²β²βπ^β²=π^β²βπβπ π¦^β²β²βπ¦^β²=π¦^β²β2π¦ π¦^β²β²βπ¦^β²βπ¦^β²+2π¦=0 π^β²β²βππ^β²+ππ=π (π^2 π¦)/(ππ₯^2 )β2 ππ¦/ππ₯+2π¦=0 Thus, Given Function is a solution of the Differential Equation