Example 10 (ii) - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Examples
Example 1 (ii)
Example 1 (iii)
Example 2 (i)
Example 2 (ii)
Example 2 (iii) Important
Example 3 (i)
Example 3 (ii) Important
Example 3 (iii)
Example 4
Example 5 (i)
Example 5 (ii)
Example 5 (iii) Important
Example 5 (iv) Important
Example 6 (i)
Example 6 (ii) Important
Example 6 (iii) Important
Example 7 (i)
Example 7 (ii) Important
Example 7 (iii)
Example 8 (i)
Example 8 (ii) Important
Example 9 (i)
Example 9 (ii) Important
Example 9 (iii) Important
Example 10 (i)
Example 10 (ii) Important You are here
Example 11
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important
Example 21 Important
Example 22 Important
Example 23
Example 24
Example 25 (i)
Example 25 (ii) Important
Example 25 (iii)
Example 25 (iv) Important
Example 26
Example 27
Example 28 Important
Example 29
Example 30
Example 31
Example 32 Important
Example 33 Important
Example 34 Important
Example 35
Example 36 Important
Example 37 Important
Example 38 Important
Example 39 Important
Example 40 Important
Example 41 Important
Example 42 Important
Question 1 Important
Question 2
Question 3 (Supplementary NCERT) Important
Last updated at Dec. 16, 2024 by Teachoo
Example 10 Find the following integrals: (ii) โซ1โ(๐ฅ + 3)/โ(5 โ 4๐ฅ โ ๐ฅ^2 ) ๐๐ฅ We can write numerator as ๐ฅ+3= A๐/๐๐ฅ [โ๐ฅ^2โ4๐ฅ+5]+ B ๐ฅ+3= A[โ2๐ฅโ4]+ B ๐ฅ+3=โ2๐ด๐ฅโ4A+B Finding A & B Comparing coefficient of ๐ฅ ๐ฅ=โ2๐ด๐ฅ 1 =โ2A A=(โ1)/( 2) Comparing constant term 3=โ4A+B 3=โ4((โ1)/( 2))+B 3=2+B B=3โ2=1 Now, we know that ๐ฅ+3=A[โ2๐ฅโ4]+B ๐ฅ+3=(โ1)/( 2) [โ2๐ฅโ4]+1 Now, our equation is โซ1โ(๐ฅ+3)/โ(5 โ 4๐ฅ + ๐ฅ^2 ).๐๐ฅ=โซ1โ(1/2 [โ2๐ฅ โ 4]+1)/โ(5 โ 4๐ฅ โ ๐ฅ^2 ).๐๐ฅ =โซ1โ((โ1)/2 [โ2๐ฅ โ 4]+1)/โ(5 โ 4๐ฅ + ๐ฅ^2 ) ๐๐ฅ+โซ1โ1/โ(5 โ 4๐ฅ โ ๐ฅ^2 ) ๐๐ฅ =(โ1)/2 โซ1โ(โ2๐ฅ โ 4)/โ(5 โ 4๐ฅ + ๐ฅ^2 ) ๐๐ฅ+โซ1โ1/โ(5 โ 4๐ฅ โ ๐ฅ^2 ) ๐๐ฅ Solving I1 I1 = (โ1)/2 โซ1โใ(โ2๐ฅ โ 4)/โ(โ๐ฅ^2 โ 4๐ฅ + 5).๐๐ฅใ Let t = โ๐ฅ^2 โ 4๐ฅ + 5 Differentiating both sides w.r.t. ๐ฅ โ2๐ฅ โ 4 =๐๐ก/๐๐ฅ ๐๐ฅ=๐๐ก/(โ 2๐ฅ โ 4) Now, I1 = (โ1)/( 2) โซ1โใ(โ2๐ฅ โ 4)/โ(โ๐ฅ^2 โ 4๐ฅ + 5).๐๐ฅใ Putting the values of (โ๐ฅ^2โ4๐ฅ+5) and ๐๐ฅ I1 = (โ1)/( 2) โซ1โใ(โ2๐ฅ โ 4)/โ๐ก.๐๐ก/((โ2๐ฅ โ4) )ใ I1 = (โ1)/( 2) โซ1โใ1/โ๐ก.๐๐กใ I1 = (โ1)/( 2) โซ1โใ1/(๐ก)^(1/2) .๐๐กใ I1 = (โ1)/( 2) โซ1โใ(๐ก)^((โ1)/2) ๐๐กใ I1 = (โ1)/( 2) ๐ก^((โ1)/( 2) + 1)/(((โ1)/( 2) + 1) )+๐ถ1 I1 = (โ1)/( 2) ๐ก^(1/( 2) )/((1/2) )+๐ถ1 I1 = โ ๐ก^(1/( 2) )+๐ถ1 I1 = โโ๐ก+๐ถ1 Putting back ๐ก=๐ฅ^2โ4๐ฅ+5) I1 = โโ(โ๐ฅ^2โ4๐ฅ+5)+๐ถ1 Solving ๐ฐ๐ I2 = โซ1โใ1/โ(5 โ 4๐ฅ โ ๐ฅ^2 ).๐๐ฅใ I2 = โซ1โใ1/โ(โ(๐ฅ^2 + 4๐ฅ โ 5) ) ๐๐ฅใ I2 = โซ1โใ1/โ(โ[๐ฅ^2 + 2(2)(๐ฅ) โ 5] ) ๐๐ฅใ I2 = โซ1โใ1/โ(โ[๐ฅ^2 + 2(2)(๐ฅ) + (2)^2 โ (2)^2 โ 5] ) ๐๐ฅใ I2 = โซ1โใ1/โ(โ[(๐ฅ + 2)^2 โ 4 โ 5] ) ๐๐ฅใ I2 = โซ1โใ1/โ(โ[(๐ฅ + 2)^2 โ 9] ) ๐๐ฅใ I2 = โซ1โใ1/โ(9 โ (๐ฅ + 2)^2 ) ๐๐ฅใ I2 = โซ1โใ1/โ((3)^2 โ (๐ฅ + 2)^2 ) ๐๐ฅใ It is of form โซ1โใ1/โ(๐^2 โ ๐ฅ^2 ).๐๐ฅ=ใ๐ ๐๐ใ^(โ1)โกใ๐ฅ/๐+๐ถ2ใ ใ Replacing ๐ฅ by (๐ฅ+2) and a by 3, we get I2 = sin^(โ1)โกใ((๐ฅ + 2)/3)+๐ถ2ใ Now, Putting values of I1 and I2 in (1) โซ1โใ(๐ฅ + 3)/โ(5 โ 4๐ฅ โ ๐ฅ^2 ).๐๐ฅ=(โ1)/( 2) โซ1โ(โ 2๐ฅ โ 4)/โ(5 โ 4๐ฅ โ ๐ฅ^2 )ใ+โซ1โ1/โ(5 โ 4๐ฅ โ ๐ฅ^2 ) ๐๐ฅ =โโ(5 โ 4๐ฅ โ ๐ฅ^2 )+๐ถ1+sin^(โ1)โก((๐ฅ + 2)/3)+๐ถ2 =โโ(๐ โ ๐๐ โ ๐^๐ )+ใ๐๐๐ใ^(โ๐)โกใ((๐ + ๐)/๐)+๐ชใ