Slide1.JPG

Slide2.JPG
Slide3.JPG
Slide4.JPG
Slide5.JPG Slide6.JPG Slide7.JPG

Go Ad-free

Transcript

Example 10 Find the following integrals: (ii) โˆซ1โ–’(๐‘ฅ + 3)/โˆš(5 โˆ’ 4๐‘ฅ โˆ’ ๐‘ฅ^2 ) ๐‘‘๐‘ฅ We can write numerator as ๐‘ฅ+3= A๐‘‘/๐‘‘๐‘ฅ [โˆ’๐‘ฅ^2โˆ’4๐‘ฅ+5]+ B ๐‘ฅ+3= A[โˆ’2๐‘ฅโˆ’4]+ B ๐‘ฅ+3=โˆ’2๐ด๐‘ฅโˆ’4A+B Finding A & B Comparing coefficient of ๐‘ฅ ๐‘ฅ=โˆ’2๐ด๐‘ฅ 1 =โˆ’2A A=(โˆ’1)/( 2) Comparing constant term 3=โˆ’4A+B 3=โˆ’4((โˆ’1)/( 2))+B 3=2+B B=3โˆ’2=1 Now, we know that ๐‘ฅ+3=A[โˆ’2๐‘ฅโˆ’4]+B ๐‘ฅ+3=(โˆ’1)/( 2) [โˆ’2๐‘ฅโˆ’4]+1 Now, our equation is โˆซ1โ–’(๐‘ฅ+3)/โˆš(5 โˆ’ 4๐‘ฅ + ๐‘ฅ^2 ).๐‘‘๐‘ฅ=โˆซ1โ–’(1/2 [โˆ’2๐‘ฅ โˆ’ 4]+1)/โˆš(5 โˆ’ 4๐‘ฅ โˆ’ ๐‘ฅ^2 ).๐‘‘๐‘ฅ =โˆซ1โ–’((โˆ’1)/2 [โˆ’2๐‘ฅ โˆ’ 4]+1)/โˆš(5 โˆ’ 4๐‘ฅ + ๐‘ฅ^2 ) ๐‘‘๐‘ฅ+โˆซ1โ–’1/โˆš(5 โˆ’ 4๐‘ฅ โˆ’ ๐‘ฅ^2 ) ๐‘‘๐‘ฅ =(โˆ’1)/2 โˆซ1โ–’(โˆ’2๐‘ฅ โˆ’ 4)/โˆš(5 โˆ’ 4๐‘ฅ + ๐‘ฅ^2 ) ๐‘‘๐‘ฅ+โˆซ1โ–’1/โˆš(5 โˆ’ 4๐‘ฅ โˆ’ ๐‘ฅ^2 ) ๐‘‘๐‘ฅ Solving I1 I1 = (โˆ’1)/2 โˆซ1โ–’ใ€–(โˆ’2๐‘ฅ โˆ’ 4)/โˆš(โˆ’๐‘ฅ^2 โˆ’ 4๐‘ฅ + 5).๐‘‘๐‘ฅใ€— Let t = โˆ’๐‘ฅ^2 โˆ’ 4๐‘ฅ + 5 Differentiating both sides w.r.t. ๐‘ฅ โˆ’2๐‘ฅ โˆ’ 4 =๐‘‘๐‘ก/๐‘‘๐‘ฅ ๐‘‘๐‘ฅ=๐‘‘๐‘ก/(โˆ’ 2๐‘ฅ โˆ’ 4) Now, I1 = (โˆ’1)/( 2) โˆซ1โ–’ใ€–(โˆ’2๐‘ฅ โˆ’ 4)/โˆš(โˆ’๐‘ฅ^2 โˆ’ 4๐‘ฅ + 5).๐‘‘๐‘ฅใ€— Putting the values of (โˆ’๐‘ฅ^2โˆ’4๐‘ฅ+5) and ๐‘‘๐‘ฅ I1 = (โˆ’1)/( 2) โˆซ1โ–’ใ€–(โˆ’2๐‘ฅ โˆ’ 4)/โˆš๐‘ก.๐‘‘๐‘ก/((โˆ’2๐‘ฅ โˆ’4) )ใ€— I1 = (โˆ’1)/( 2) โˆซ1โ–’ใ€–1/โˆš๐‘ก.๐‘‘๐‘กใ€— I1 = (โˆ’1)/( 2) โˆซ1โ–’ใ€–1/(๐‘ก)^(1/2) .๐‘‘๐‘กใ€— I1 = (โˆ’1)/( 2) โˆซ1โ–’ใ€–(๐‘ก)^((โˆ’1)/2) ๐‘‘๐‘กใ€— I1 = (โˆ’1)/( 2) ๐‘ก^((โˆ’1)/( 2) + 1)/(((โˆ’1)/( 2) + 1) )+๐ถ1 I1 = (โˆ’1)/( 2) ๐‘ก^(1/( 2) )/((1/2) )+๐ถ1 I1 = โˆ’ ๐‘ก^(1/( 2) )+๐ถ1 I1 = โˆ’โˆš๐‘ก+๐ถ1 Putting back ๐‘ก=๐‘ฅ^2โˆ’4๐‘ฅ+5) I1 = โˆ’โˆš(โˆ’๐‘ฅ^2โˆ’4๐‘ฅ+5)+๐ถ1 Solving ๐‘ฐ๐Ÿ I2 = โˆซ1โ–’ใ€–1/โˆš(5 โˆ’ 4๐‘ฅ โˆ’ ๐‘ฅ^2 ).๐‘‘๐‘ฅใ€— I2 = โˆซ1โ–’ใ€–1/โˆš(โˆ’(๐‘ฅ^2 + 4๐‘ฅ โˆ’ 5) ) ๐‘‘๐‘ฅใ€— I2 = โˆซ1โ–’ใ€–1/โˆš(โˆ’[๐‘ฅ^2 + 2(2)(๐‘ฅ) โˆ’ 5] ) ๐‘‘๐‘ฅใ€— I2 = โˆซ1โ–’ใ€–1/โˆš(โˆ’[๐‘ฅ^2 + 2(2)(๐‘ฅ) + (2)^2 โˆ’ (2)^2 โˆ’ 5] ) ๐‘‘๐‘ฅใ€— I2 = โˆซ1โ–’ใ€–1/โˆš(โˆ’[(๐‘ฅ + 2)^2 โˆ’ 4 โˆ’ 5] ) ๐‘‘๐‘ฅใ€— I2 = โˆซ1โ–’ใ€–1/โˆš(โˆ’[(๐‘ฅ + 2)^2 โˆ’ 9] ) ๐‘‘๐‘ฅใ€— I2 = โˆซ1โ–’ใ€–1/โˆš(9 โˆ’ (๐‘ฅ + 2)^2 ) ๐‘‘๐‘ฅใ€— I2 = โˆซ1โ–’ใ€–1/โˆš((3)^2 โˆ’ (๐‘ฅ + 2)^2 ) ๐‘‘๐‘ฅใ€— It is of form โˆซ1โ–’ใ€–1/โˆš(๐‘Ž^2 โˆ’ ๐‘ฅ^2 ).๐‘‘๐‘ฅ=ใ€–๐‘ ๐‘–๐‘›ใ€—^(โˆ’1)โกใ€–๐‘ฅ/๐‘Ž+๐ถ2ใ€— ใ€— Replacing ๐‘ฅ by (๐‘ฅ+2) and a by 3, we get I2 = sin^(โˆ’1)โกใ€–((๐‘ฅ + 2)/3)+๐ถ2ใ€— Now, Putting values of I1 and I2 in (1) โˆซ1โ–’ใ€–(๐‘ฅ + 3)/โˆš(5 โˆ’ 4๐‘ฅ โˆ’ ๐‘ฅ^2 ).๐‘‘๐‘ฅ=(โˆ’1)/( 2) โˆซ1โ–’(โˆ’ 2๐‘ฅ โˆ’ 4)/โˆš(5 โˆ’ 4๐‘ฅ โˆ’ ๐‘ฅ^2 )ใ€—+โˆซ1โ–’1/โˆš(5 โˆ’ 4๐‘ฅ โˆ’ ๐‘ฅ^2 ) ๐‘‘๐‘ฅ =โˆ’โˆš(5 โˆ’ 4๐‘ฅ โˆ’ ๐‘ฅ^2 )+๐ถ1+sin^(โˆ’1)โก((๐‘ฅ + 2)/3)+๐ถ2 =โˆ’โˆš(๐Ÿ“ โˆ’ ๐Ÿ’๐’™ โˆ’ ๐’™^๐Ÿ )+ใ€–๐’”๐’Š๐’ใ€—^(โˆ’๐Ÿ)โกใ€–((๐’™ + ๐Ÿ)/๐Ÿ‘)+๐‘ชใ€—

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo