Example 9 - Chapter 7 Class 12 Integrals - Part 7

Example 9 - Chapter 7 Class 12 Integrals - Part 8

Go Ad-free

Transcript

Example 9 Find the following integrals: (iii) ∫1▒𝑑π‘₯/(√(5π‘₯^2 βˆ’ 2π‘₯) ) ∫1▒𝑑π‘₯/(√(5π‘₯^2 βˆ’ 2π‘₯) ) = ∫1▒𝑑π‘₯/(√(5(π‘₯^2 βˆ’ 2/5 π‘₯) ) ) = ∫1▒𝑑π‘₯/(√(5(π‘₯^2 βˆ’ 2(π‘₯)(1/5)) ) ) = ∫1▒𝑑π‘₯/(√(5(π‘₯^2 βˆ’ 2(π‘₯)(1/5) + (1/5)^2βˆ’ (1/5)^2 ) ) ) = ∫1▒𝑑π‘₯/(√(5[(π‘₯ βˆ’ 1/5)^2βˆ’(1/5)^2 ] ) ) = ∫1▒𝑑π‘₯/(√5 √((π‘₯ βˆ’ 1/5)^2βˆ’(1/5)^2 )) (Taking 5 common) [Adding and subtracting (1/5)^2] = ∫1▒𝑑π‘₯/(√(5[(π‘₯ βˆ’ 1/5)^2βˆ’(1/5)^2 ] ) ) = ∫1▒𝑑π‘₯/(√5 √((π‘₯ βˆ’ 1/5)^2βˆ’(1/5)^2 )) =1/√5 π‘™π‘œπ‘”|π‘₯βˆ’1/5+√((π‘₯βˆ’1/5)^2βˆ’(1/5)^2 )|+𝐢 =1/√5 π‘™π‘œπ‘”|π‘₯βˆ’1/5+√(π‘₯^2+(1/5)^2βˆ’2(π‘₯)(1/5)βˆ’(1/5)^2 )|+𝐢 =𝟏/βˆšπŸ“ π’π’π’ˆ|π’™βˆ’πŸ/πŸ“+√(𝒙^πŸβˆ’πŸπ’™/πŸ“)|+π‘ͺ It is of form ∫1▒〖𝑑π‘₯/(√(π‘₯^2 βˆ’ π‘Ž^2 ) )=π‘™π‘œπ‘”|π‘₯+√(π‘₯^2βˆ’π‘Ž^2 )|+𝐢1γ€— Replacing π‘₯ by (π‘₯βˆ’1/5)π‘Žπ‘›π‘‘ π‘Ž 𝑏𝑦 1/5, (Using√(π‘Ž.𝑏)=βˆšπ‘Ž βˆšπ‘)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo