Example 9 - Chapter 7 Class 12 Integrals - Part 3

Example 9 - Chapter 7 Class 12 Integrals - Part 4
Example 9 - Chapter 7 Class 12 Integrals - Part 5
Example 9 - Chapter 7 Class 12 Integrals - Part 6

Go Ad-free

Transcript

Example 9 Find the following integrals: (ii) ∫1▒𝑑𝑥/(〖3𝑥〗^2−13𝑥 + 10) ∫1▒𝑑𝑥/(〖3𝑥〗^2 − 13𝑥 + 10) Solving denominator 〖3𝑥〗^2+13𝑥−10 =3(𝑥^2+13/3 𝑥 −10/3) =3(𝑥^2+2. 𝑥× 13/6 −10/3) Adding and subtracting (13/6)^2 =3(𝑥^2+2. 𝑥× 13/6+(13/6)^2−10/3−(13/6)^2 ) =3((𝑥+13/6)^2−10/3−(169/36)) =3((𝑥+13/6)^2−(10/3 +169/36)) =3((𝑥+13/6)^2−((120 +169)/36 )) =3((𝑥+13/6)^2−289/36) =3((𝑥+13/6)^2−(17/6)^2 ) Hence, our equation becomes ∫1▒𝑑𝑥/(〖3𝑥〗^2 − 13𝑥 + 10) = 1/3 ∫1▒𝑑𝑥/((𝑥 + 13/6)^2− (17/6)^2 ) It is of form ∫1▒〖𝑑𝑥/(𝑥^2 − 𝑎^2 )=1/2𝑎 𝑙𝑜𝑔|(𝑥 − 𝑎)/(𝑥 + 𝑎)|+𝐶1〗 Replacing 𝑥 by (𝑥+13/6)𝑎𝑛𝑑 𝑎 𝑏𝑦 17/6, = 1/3 × 1/2(17/6) ×log⁡|(𝑥 + 13/6 − 17/6)/(𝑥+ 13/6 + 17/6)| + C = 1/3 × 6/2(17) ×log⁡|((6𝑥 + 13 − 17)/6)/((6𝑥 +13 + 17)/6)| + C = 1/17 log⁡|(6𝑥 − 4)/(6𝑥 + 30)| + C = 1/17 log⁡|(2(3𝑥 − 2))/(6(𝑥 + 5))|+ C = 1/17 log⁡|( (3𝑥 − 2))/(3(𝑥 + 5))|+ C = 1/17 log⁡|( (3𝑥 − 2))/((𝑥 + 5))|−1/17 log⁡3 + C = 𝟏/𝟏𝟕 𝒍𝒐𝒈⁡|( (𝟑𝒙 − 𝟐))/((𝒙 + 𝟓))|+ C1

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo