The value of the expression [(sin 2 ⁡22 ° + sin 2 ⁡68 ° )/(cos 2 ⁡ 22 ° + cos 2 ⁡ 68 ° ) + sin 2 ⁡ 63 ° + cos⁡ 63 ° sin⁡27 ° ] is
(A) 3 (B) 2 (C) 1 (D) 0
NCERT Exemplar - MCQ
NCERT Exemplar - MCQ
Last updated at Dec. 16, 2024 by Teachoo
Question 14 The value of the expression [(sin^222"°" + sin^268"°" )/(cos^2〖22"°" 〗+ cos^268"°" )+sin^2〖63"°" +cos〖63"°" sin27"°" 〗 〗 ] is (A) 3 (B) 2 (C) 1 (D) 0 (sin^222"°" + sin^268"°" )/(cos^2〖22"°" 〗+ cos^268"°" )+sin^2〖63"°" +cos63"°" 𝒔𝒊𝒏𝟐𝟕"°" 〗 Using sin θ = cos (90° − θ) = (sin^222"°" + sin^268"°" )/(cos^2〖22"°" 〗+ cos^268"°" )+sin^2〖63"°" +cos〖63"°" 𝐜𝐨𝐬〖(𝟗𝟎°−𝟐𝟕"°)" 〗 〗 〗 = (sin^222"°" + sin^268"°" )/(cos^2〖22"°" 〗+ cos^268"°" )+sin^2〖63"°" +cos〖63"°" 𝒄𝒐𝒔〖𝟔𝟑°〗 〗 〗 = (sin^222"°" + sin^268"°" )/(cos^2〖22"°" 〗+ cos^268"°" )+〖𝒔𝒊𝒏〗^𝟐〖𝟔𝟑"°" +〖𝒄𝒐𝒔〗^𝟐𝟔𝟑"°" 〗 Using cos2 θ + sin2 θ = 1 (sin^222"°" + 〖𝒔𝒊𝒏〗^𝟐𝟔𝟖"°" )/(cos^2〖22"°" 〗+ 〖𝒄𝒐𝒔〗^𝟐𝟔𝟖"°" )+1 = (sin^222"°" + 〖𝒄𝒐𝒔〗^𝟐(𝟗𝟎° − 𝟔𝟖"°" ))/(cos^2〖22"°" 〗+ 〖𝒔𝒊𝒏〗^𝟐(𝟗𝟎° − 𝟔𝟖"°" ) )+1 = (sin^222"°" + 〖𝒄𝒐𝒔〗^𝟐𝟐𝟐"°" )/(cos^2〖22"°" 〗+ 〖𝒄𝒐𝒔〗^𝟐𝟐𝟐"°" )+1 = 1+1 = 2 So, the correct answer is (B)