Examples
Last updated at Dec. 16, 2024 by Teachoo
Transcript
Example 26 Differentiate the following w.r.t. x: (ii) sinβ‘(logβ‘π₯), π₯ > 0 Let π¦ =sinβ‘(logβ‘π₯) Differentiating both sides π€.π.π‘.π₯ ππ¦/ππ₯ = (π(sinβ‘(logβ‘π₯)) )/ππ₯ ππ¦/ππ₯ = cosβ‘(logβ‘π₯) . (πβ‘(logβ‘π₯ ) )/ππ₯ ππ¦/ππ₯ = cosβ‘(logβ‘π₯) . 1/π₯ π π/π π = (πππβ‘(πππβ‘π)" " )/π (π ππβ‘π₯ )^β²=πππ β‘π₯ ((πππβ‘π₯ )^β²= 1/π₯)