Last updated at April 16, 2024 by Teachoo
Example 3 Show that (ii) sinβ1 (2xβ(1βπ₯2)) = 2 cosβ1x Solving L.H.S. sinβ1 ( 2x β(1βπ₯2) ) Putting x = cos ΞΈ = sinβ1 ("2 cos ΞΈ " β(πβππππ" ΞΈ" )) = sinβ1 ("2 cos ΞΈ " β(ππππ" ΞΈ" )) = sinβ1 (2 cos ΞΈ sin ΞΈ) = sinβ1 (sin 2ΞΈ) We need to make 2x β(πβππ) in terms of sin When we get β(1βπ₯2) , we put x = cos ΞΈ or sin ΞΈ