There is a bridge whose length of three sides of a trapezium other than base are equal to 10 cm.

Based on the above information answer the following:

This question is inspired from Example 37 - Chapter 6 Class 12 (AOD) - Maths

Slide65.JPG

Question 1

What is the value of DP?

(A) √( 100 - x 2 )  

(B) √( x 2 - 100 )

(C) 100 - x 2   

(D) x 2 − 100

Slide66.JPG

 

Question 2

What is the area of trapezium A(x)?

(A) (x - 10 )√( 100 - x 2 )  

(B) ( x + 10) √( 100 - x 2 )

(C) ( x - 10 ) (100 - x 2 )

(D) ( x + 10)(100 - x 2 )

Slide67.JPG

Slide68.JPG

 

Question 3

If A'(x) = 0, then what are the values of x?

(A) 5,-10 

(B) - 5, 10

(C) - 5,-10 

(D) 5,10

Slide69.JPG Slide70.JPG Slide71.JPG

 

Question 4

What is the value of maximum Area?

(A) 75 √2  cm 2  

(B) 75 √3  cm 2

(C) 75 √5  cm 2   

(D) 75 √7  cm 2  

Slide72.JPG Slide73.JPG Slide74.JPG Slide75.JPG

Go Ad-free

Transcript

Question There is a bridge whose length of three sides of a trapezium other than base are equal to 10 cm. Based on the above information answer the following: Question 1 What is the value of DP? (A) āˆš(100āˆ’š‘„^2 ) (B) āˆš(š‘„^2āˆ’100) (C) 100āˆ’š‘„^2 (D)怖 š‘„怗^2 āˆ’ 100 In Ī” ADP By Pythagoras theorem DP2 + AP2 = AD2 DP2 + x2 = 102 DP2 + x2 = 100 DP2 = 100 ā€“ š‘„2 DP = āˆš(šŸšŸŽšŸŽ āˆ’š’™šŸ) So, the correct answer is (A) Question 2 What is the area of trapezium A(x)? (A) (š‘„ āˆ’10)āˆš(100āˆ’š‘„^2 ) (B) (š‘„+10)āˆš(100āˆ’š‘„^2 ) (C) (š‘„āˆ’10)(100āˆ’š‘„^2) (D) (š‘„+10)(100āˆ’š‘„^2 ") " Let A be the area of trapezium ABCD A = 1/2 (Sum of parallel sides) Ɨ (Height) A = šŸ/šŸ (DC + AB) Ɨ DP A = 1/2 (10+2š‘„+10) (āˆš(100āˆ’š‘„2)) A = 1/2 (2š‘„+20) (āˆš(100āˆ’š‘„2)) A = (š’™+šŸšŸŽ) (āˆš(šŸšŸŽšŸŽāˆ’š’™šŸ)) So, the correct answer is (B) Question 3 If A'(x) = 0, then what are the values of x? (A) 5,āˆ’10 (B) āˆ’5, 10 (C) āˆ’5,āˆ’10 (D) 5,10 A = (š’™+šŸšŸŽ) (āˆš(šŸšŸŽšŸŽāˆ’š’™šŸ)) Since A has a square root It will be difficult to differentiate Let Z = A2 = (š‘„+10)^2 (100āˆ’š‘„2) Where A'(x) = 0, there Zā€™(x) = 0 So, the correct answer is (A) Differentiating Z Z =(š‘„+10)^2 " " (100āˆ’š‘„2) Differentiating w.r.t. x Zā€™ = š‘‘((š‘„ + 10)^2 " " (100 āˆ’ š‘„2))/š‘‘š‘˜ Using product rule As (š‘¢š‘£)ā€² = uā€™v + vā€™u Zā€™ = [(š‘„ + 10)^2 ]^ā€² (100 āˆ’ š‘„^2 )+(š‘„ + 10)^2 " " (100 āˆ’ š‘„^2 )^ā€² Zā€™ = 2(š‘„ + 10)(100 āˆ’ š‘„^2 )āˆ’2š‘„(š‘„ + 10)^2 Zā€™ = 2(š‘„ + 10)[100 āˆ’ š‘„^2āˆ’š‘„(š‘„+10)] Zā€™ = 2(š‘„ + 10)[100 āˆ’ š‘„^2āˆ’š‘„^2āˆ’10š‘„] Zā€™ = 2(š‘„ + 10)[āˆ’2š‘„^2āˆ’10š‘„+100] Zā€™ = āˆ’šŸ’(š’™ + šŸšŸŽ)[š’™^šŸ+šŸ“š’™+šŸ“šŸŽ] Putting š’…š’/š’…š’™=šŸŽ āˆ’4(š‘„ + 10)[š‘„^2+5š‘„+50] =0 (š‘„ + 10)[š‘„^2+5š‘„+50] =0 (š‘„ + 10) [š‘„2+10š‘„āˆ’5š‘„āˆ’50]=0 (š‘„ + 10) [š‘„(š‘„+10)āˆ’5(š‘„+10)]=0 (š’™ + šŸšŸŽ)(š’™āˆ’šŸ“)(š’™+šŸšŸŽ)=šŸŽ So, š‘„=šŸ“ & š’™=āˆ’šŸšŸŽ So, the correct answer is (A) Question 4 What is the value of maximum Area? (A) 75 āˆš2 cm^2 (B) 75 āˆš3 cm^2 (C) 75 āˆš5 cm^2 (D) 75 āˆš7 cm^2 We know that Zā€™(x) = 0 at x = 5, āˆ’10 Since x is length, it cannot be negative āˆ“ x = 5 Finding sign of Zā€™ā€™ for x = 5 Now, Zā€™ = āˆ’4(š‘„ + 10)[š‘„^2+5š‘„+50] Zā€™ = āˆ’4[š‘„(š‘„^2+5š‘„+50)+10(š‘„^2+5š‘„+50)] Zā€™ = āˆ’4[š‘„^3+5š‘„^2+50š‘„+10š‘„^2+50š‘„+500] Zā€™ = āˆ’šŸ’[š’™^šŸ‘+šŸšŸ“š’™^šŸ+šŸšŸŽšŸŽš’™+šŸ“šŸŽšŸŽ] Differentiating w.r.t x Zā€™ā€™ = š‘‘(āˆ’4[š’™^šŸ‘ + šŸšŸ“š’™^šŸ + šŸšŸŽšŸŽš’™ + šŸ“šŸŽšŸŽ])/š‘‘š‘˜ Zā€™ā€™ =āˆ’4[3š‘„^2+15 Ɨ 2š‘„+100] Zā€™ā€™ =āˆ’4[3š‘„^2+30š‘„+100] Putting x = 5 Zā€™ā€™ (5) = āˆ’4[3(5^2) +30(5) +100] = āˆ’4 Ɨ 375 = āˆ’1500 < 0 Hence, š‘„ = 5 is point of Maxima āˆ“ Z is Maximum at š‘„ = 5 That means, Area A is maximum when x = 5 Finding maximum area of trapezium A = (š‘„+10) āˆš(100āˆ’š‘„2) = (5+10) āˆš(100āˆ’(5)2) = (15) āˆš(100āˆ’25) = 15 āˆš75 = 75āˆššŸ‘ cm2 So, the correct answer is (C)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo