Chapter 2 Class 12 Inverse Trigonometric Functions
Serial order wise

The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For the viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information and the following:

The Government of India is Planing - Teachoo.jpg

Slide9.JPG

Question 1

Measure of ∠CAB =

(a)  tan (-1)   (2)
(b)  tan (-1)   (1/2)
(c)  tan (-1)   (1)
(d)  tan (-1)   (3)

Slide14.JPG

Slide15.JPG

Question 2

Measure of ∠DAB =

(a)  tan (-1)   (3/4)
(b)  tan (-1)   (3)
(c)  tan (-1)   (4/3)
(d)  tan (-1)  (4)

Slide16.JPG Slide17.JPG

Question 3

Measure of ∠EAB =

(a)  tan (-1)   (11)
(b)  tan (-1)   3
(c)  tan (-1)   (2/11)
(d)  tan (-1)   (11/2)

Slide18.JPG Slide19.JPG Slide20.JPG

Question 4

𝐴’ Is another viewer standing on the same line of observation across the road. If the width of the road is 5 meters, then the difference between ∠𝐢𝐴𝐡 and ∠𝐢𝐴′𝐡 Is

(a)  tan (-1)   (1/2)
(b)  tan (-1) (1/8)
(c)  tan (-1) (2/5)
(d)  tan (-1) (11/21)

Slide21.JPG Slide22.JPG Slide23.JPG

Note: This answer doesn’t match with any of the options

Please email us at [email protected] if you think we made a mistake

Question 5

Domain and Range of tan −1 x =

(a)  R+ , (-π/2, π/2)
(b)  R– , (-π/2, π/2)
(c)  R , (-π/2, π/2)
(d)  R , (0, π/2)

Slide24.JPG

Go Ad-free

Transcript

The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. β€œA” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. β€œC” is at the height of 10 metres from the ground level. For the viewer A, the angle of elevation of β€œD” is double the angle of elevation of β€œC” The angle of elevation of β€œE” is triple the angle of elevation of β€œC” for the same viewer. Look at the figure given and based on the above information and the following: Question 1 Measure of ∠CAB = (a) γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (2) (b) γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (1/2) (c) γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (1) (d) γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (3) In Ξ” ABC tan A = 𝑩π‘ͺ/𝑨𝑩 tan A = 10/20 tan A = 1/2 ∠ A = γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (1/2) ∠ CAB = γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (1/2) So, the correct answer is (b) Question 2 Measure of ∠DAB = (a) γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (3/4) (b) γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (3) (c) γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (4/3) (d) γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (4) Given that ∠ DAB = 2 Γ— ∠ CAB = 2 Γ— γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (1/2) = γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) ((2 Γ— 1/2)/(1βˆ’(1/2)^2 )) = γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (1/(1 βˆ’ 1/4)) = γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (1/(3/4)) = 〖𝒕𝒂𝒏〗^(βˆ’πŸ) (πŸ’/πŸ‘) So, the correct answer is (c) Question 3 Measure of ∠EAB = (a) γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (11) (b) γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) 3 (c) γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (2/11) (d) γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (11/2) Given that ∠ EAB = 3 Γ— ∠ CAB = 3 Γ— γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (1/2) Using 3 γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯=γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (3π‘₯ βˆ’ π‘₯^3)/(1 βˆ’3π‘₯^2 ) = γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) ((3 Γ— 1/2 βˆ’ (1/2)^3)/(1βˆ’γ€–3(1/2)γ€—^2 )) = γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) ((3/2 βˆ’ 1/8)/(1 βˆ’ 3/4)) = γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (((3 Γ— 4 βˆ’ 1)/8)/((4 βˆ’ 3)/4)) = γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) ((11/8)/(1/4)) = γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (11/8 Γ— 4/1) = 〖𝒕𝒂𝒏〗^(βˆ’πŸ) (𝟏𝟏/𝟐) So, the correct answer is (d) Question 4 𝐴’ Is another viewer standing on the same line of observation across the road. If the width of the road is 5 meters, then the difference between ∠𝐢𝐴𝐡 and βˆ πΆπ΄β€²π΅ Is (a) γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (1/2) (b) γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (1/8) (c) γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (2/5) (d) γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (11/21) In Ξ” A’BC tan A’ = 𝑩π‘ͺ/𝑨′𝑩 tan A’ = 10/25 tan A’ = 2/5 ∠ A’ = γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (2/5) ∠ C’AB = 〖𝒕𝒂𝒏〗^(βˆ’πŸ) (𝟐/πŸ“) Now, we need to find difference between ∠𝐢𝐴𝐡 and βˆ πΆπ΄β€²π΅ ∠𝐢𝐴𝐡 βˆ’ βˆ πΆπ΄β€²π΅ = 〖𝒕𝒂𝒏〗^(βˆ’πŸ) (𝟏/𝟐) βˆ’ 〖𝒕𝒂𝒏〗^(βˆ’πŸ) (𝟐/πŸ“) = γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) ((1/2 βˆ’ 2/5)/(1 + 1/2 Γ— 2/5)) = γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (((5 βˆ’ 4)/(2 Γ— 5))/(1 + 1/5)) = γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) ((1/10)/( 6/5)) So, the correct answer is (b) = γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (((5 βˆ’ 4)/(2 Γ— 5))/(1 + 1/5)) = γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) ((1/10)/( 6/5)) = γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (1/10 Γ—5/6) = 〖𝒕𝒂𝒏〗^(βˆ’πŸ) (𝟏/𝟏𝟐) Question 5 Domain and Range of tanβˆ’1 π‘₯ = (a) R+ , (βˆ’πœ‹/2,πœ‹/2) (b) R– , (βˆ’πœ‹/2,πœ‹/2) (c) R , (βˆ’πœ‹/2,πœ‹/2) (d) R , (0,πœ‹/2) Since tan x is not defined at x = (βˆ’πœ‹)/2, and x = πœ‹/2 Range of tanβˆ’1 π‘₯ excludes (βˆ’πœ‹)/2 and πœ‹/2 Domain of tanβˆ’1 π‘₯ is all real numbers So, the correct answer is (c)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo