Slide7.JPG

Slide8.JPG
Slide9.JPG

 

Go Ad-free

Transcript

Ex 9.2, 2 If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord. Given: Let AB & CD be the two equal chords intersecting at point X. ⇒ AB = CD To prove: Corresponding segments are equal, i.e., AX = DX and BX = CX Proof: We draw OM ⊥ AB & ON ⊥ CD So, AM = BM = 1/2 AB & DN = CN = 1/2 CD As AB = CD, ⇒ 1/2 AB = 1/2 CD ∴ AM = DN & MB = CN In ΔOMX and ΔONX, ∠OMX = ∠ONX OX = OX OM = ON ∴ ΔOMX ≅ ΔONX ∴ MX = NX Adding (1) & (3) AM + MX = DN + NX AX = DX Therefore, AX = DX & BX = CX Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo