Examples
Example 1 (ii)
Example 1 (iii)
Example 2 (i)
Example 2 (ii) Important
Example 2 (iii) Important
Example 2 (iv)
Example 2 (v)
Example 3 (i) Important
Example 3 (ii) Important
Example 4 (i)
Example 4 (ii) Important
Example 5
Example 6
Example 7 Important
Example 8
Example 9
Example 10 Important
Example 11
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16
Example 17 Important
Example 18
Example 19 (i) Important
Example 19 (ii)
Example 20 (i)
Example 20 (ii) Important You are here
Example 21 (i)
Example 21 (ii) Important
Example 22 (i)
Example 22 (ii) Important
Last updated at Dec. 16, 2024 by Teachoo
Example 20 Find the derivative of f(x) from the first principle, where f(x) is (ii) x sin x Given f (x) = x sin x We need to find Derivative of f(x) We know that fβ(x) = limβ¬(hβ0) πβ‘γ(π₯ + β) β π(π₯)γ/β Here, f (x) = x sin x So, f (x + h) = (x + h) sin (x + h) Putting values fβ(x) =limβ¬(hβ0) ((π₯ + β) sinβ‘γ (π₯ + β) β π₯ sinβ‘γπ₯ γ γ)/β Using sin (A + B) = sin A cos B + cos A sin B = limβ¬(hβ0)β‘γ((π₯ + β)(sinβ‘γπ₯ cosβ‘γβ +γ cos π₯γβ‘sinβ‘γβ γ )γ β π₯ sinβ‘π₯ γ)/βγ = limβ¬(hβ0)β‘γ(π₯(sinβ‘γπ₯ cosβ‘γβ +γ cosγβ‘γπ₯ sinβ‘γβ) + β (sinβ‘γπ₯ cosβ‘γβ +γ cosγβ‘γπ₯ sinβ‘γβ) β π₯ sinβ‘π₯ γ γ γ γ γ γ γ γ)/βγ = limβ¬(hβ0)β‘γ(π₯ sinβ‘γπ₯ cosβ‘γβ + π₯ cosβ‘γπ₯ sinβ‘γβ + β γ(sinγβ‘γπ₯ cosβ‘γβ + cosβ‘γπ₯ sinβ‘γβ) β π₯ sinβ‘π₯ γ γ γ γ γ γ γ γ)/βγ = limβ¬(hβ0)β‘γ(π₯π ππ π₯ cosβ‘γβ β π₯ sinβ‘γπ₯ + π₯ cosβ‘γπ₯ sinβ‘γβ + β(sinβ‘γπ₯ cosβ‘γβ + cosβ‘γπ₯ sinβ‘β γ γ)γ γ γ γ γ)/βγ = limβ¬(hβ0)β‘γ(π₯π ππ π₯ γ(cosγβ‘γβ β 1)+ π₯ cosβ‘γπ₯ sinβ‘γβ + β(sinβ‘γπ₯ cosβ‘γβ + cosβ‘γπ₯ sinβ‘β γ γ)γ γ γ γ)/βγ = limβ¬(hβ0)β‘((π₯ sinβ‘γπ₯ (cosβ‘γβ β1)γ γ)/β+(π₯ cosβ‘γπ₯ sinβ‘β γ)/β+(β (sinβ‘γπ₯ cosβ‘γβ +cosβ‘γπ₯ sinβ‘γβ)γ γ γ γ)/β) = limβ¬(hβ0)β‘γγx sinγβ‘γπ₯ (cosβ‘γβ β1)γ γ/β+limβ¬(hβ0) (π₯ cosβ‘γπ₯ sinβ‘β γ )/h+limβ¬(hβ0) (sinβ‘γπ₯ cosβ‘γβ +cosβ‘γπ₯ sinβ‘γβ )γ γ γ γ γ = β x sin x (π₯π’π¦)β¬(π‘βπ) ((πβγ πππγβ‘γπ)γ)/π+π₯ cosβ‘γπ₯ (π₯π’π¦)β¬(π‘βπ) πππβ‘π/π‘+γ limβ¬(hβ0) (sinβ‘γπ₯ cosβ‘γβ +cosβ‘γπ₯ sinβ‘γβ )γ γ γ γ = β x sin x (0) + x cos x (1) + ( sin x cos 0 + cos x sin 0) = 0 + x cos x + sin Γ 1 + cos x Γ 0 = 0 + x cos x + sin x + 0 = x cos x + sin x Hence fβ (x) = x cos x + sin x