Question 37 (Choice 1) - CBSE Class 12 Sample Paper for 2021 Boards - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards
Last updated at Dec. 16, 2024 by Teachoo
Find the shortest distance between the lines r
→
= 3i + 2j - 4k + λ (i + 2j -2k )
And r = 5i + 2j - u (3i + 2j +6k). If the lines intersect find their point of intersection
Note
: This
is similar
to
Ex 11.2, 14 ; Ex 11.2, 16 and
Misc
9
of NCERT –
Chapter 11 Class 12 Three Dimensional Geometry
Check the answer here
Transcript
Question 37 (Choice 1) Find the shortest distance between the lines 𝑟 ⃗ = 3𝑖 ̂ + 2𝑗 ̂ − 4𝑘 ̂ + 𝜆 (𝑖 ̂ + 2𝑗 ̂ + 2𝑘 ̂) And 𝑟 ⃗ = 5𝑖 ̂ − 2𝑗 ̂ + 𝜇(3𝑖 ̂ + 2𝑗 ̂ + 6𝑘 ̂) If the lines intersect find their point of intersection
Shortest distance between lines with vector equations
𝑟 ⃗ = (𝑎1) ⃗ + 𝜆 (𝑏1) ⃗ and 𝑟 ⃗ = (𝑎2) ⃗ + 𝜇(𝑏2) ⃗ is |(((𝒃𝟏) ⃗ × (𝒃𝟐) ⃗ ).((𝒂𝟐) ⃗ − (𝒂𝟏) ⃗ ))/|(𝒃𝟏) ⃗ × (𝒃𝟐) ⃗ | |
𝒓 ⃗ = (3𝒊 ̂ + 2𝒋 ̂ − 4𝒌 ̂) + 𝜆 (𝒊 ̂ + 2𝒋 ̂ + 2𝒌 ̂)
Comparing with 𝑟 ⃗ = (𝑎1) ⃗ + 𝜆(𝑏1) ⃗ ,
(𝑎1) ⃗ = 3𝑖 ̂ + 2𝑗 ̂ − 4𝑘 ̂
& (𝑏1) ⃗ = 1𝑖 ̂ + 2𝑗 ̂ + 2𝑘 ̂
𝒓 ⃗ = (5𝒊 ̂ − 2𝒋 ̂) + 𝝁 (3𝒊 ̂ + 2𝒋 ̂ + 6𝒌 ̂)
Comparing with 𝑟 ⃗ = (𝑎2) ⃗ + 𝜇(𝑏2) ⃗ ,
(𝑎2) ⃗ = 5𝑖 ̂ − 2𝑗 ̂ + 0𝑘 ̂
& (𝑏2) ⃗ = 3𝑖 ̂ + 2𝑗 ̂ + 6𝑘 ̂
Now,
((𝒂𝟐) ⃗ − (𝒂𝟏) ⃗) = (5𝑖 ̂ − 2𝑗 ̂ + 0𝑘 ̂) − (3𝑖 ̂ + 2𝑗 ̂ − 4𝑘 ̂)
= (5 − 3) 𝑖 ̂ + (−2 − 2)𝑗 ̂ + (0 − (−4)) 𝑘 ̂
= 2𝒊 ̂ − 4𝒋 ̂ + 4𝒌 ̂
((𝒃𝟏) ⃗ × (𝒃𝟐) ⃗) = |■8(𝑖 ̂&𝑗 ̂&𝑘 ̂@1& 2&2@3&2&6)|
= 𝑖 ̂ [(2 × 6)−(2 × 2)] − 𝑗 ̂ [(1 × 6)−(3 × 2)] + 𝑘 ̂ [(1 × 2)−(3 × 2)]
= 𝑖 ̂ [ 12−4] − 𝑗 ̂ [6−6] + 𝑘 ̂ [2−6]
= 𝑖 ̂ (8) − 𝑗 ̂ (0) + 𝑘 ̂(−4)
= 8𝒊 ̂ − 4𝒌 ̂
Magnitude of (𝑏1) ⃗ × (𝑏2) ⃗ = √(8^2+0^2+〖(−4)〗^2 )
|(𝒃𝟏) ⃗ × (𝒃𝟐) ⃗ | = √(64+16) = √80 = 4√5
Also,
((𝒃𝟏) ⃗×(𝒃𝟐) ⃗ ) . ((𝒂𝟐) ⃗ − (𝒂𝟏) ⃗ ) = (8𝑖 ̂ − 4𝑘 ̂). (2𝑖 ̂ − 4𝑗 ̂ + 4𝑘 ̂)
= (8 × 2) + (0 × −4) + (−4 × 4)
= −16 + 0 + (−16)
= 0
Shortest distance = |(((𝑏1) ⃗ × (𝑏2) ⃗ ) . ((𝑎2) ⃗ − (𝑎1) ⃗ ))/|(𝑏1) ⃗ × (𝑏2) ⃗ | |
= |( 0)/(4√5)|
= 0
Therefore, the shortest distance between the given two lines is 0
Finding Point of Intersection
Since our lines are
𝑟 ⃗ = 3𝑖 ̂ + 2𝑗 ̂ − 4𝑘 ̂ + 𝜆 (𝑖 ̂ + 2𝑗 ̂ + 2𝑘 ̂) And 𝑟 ⃗ = 5𝑖 ̂ − 2𝑗 ̂ + 𝜇(3𝑖 ̂ + 2𝑗 ̂ + 6𝑘 ̂)
Thus,
3𝒊 ̂ + 2𝒋 ̂ − 4𝒌 ̂ + 𝝀 (𝒊 ̂ + 2𝒋 ̂ + 2𝒌 ̂) = 5𝒊 ̂ − 2𝒋 ̂ + 𝝁(3𝒊 ̂ + 2𝒋 ̂ + 6𝒌 ̂)
(3 + 𝜆)𝑖 ̂ + (2 + 2𝜆) 𝑗 ̂ + (−4 + 2𝜆) 𝑘 ̂ = (5 + 3𝜇)𝑖 ̂ + (−2 + 2𝜇)𝑗 ̂ + 6𝜇𝑘 ̂
Thus, 3 + 𝜆 = 5 + 3𝜇
2 + 2𝜆 = −2 + 2𝜇
−4 + 2𝜆 = 6𝜇
Solving (1) and (2)
𝜆 − 3𝜇 = 5 − 3
𝝀 − 3𝝁 = 2
And,
2 + 2𝜆 = −2 + 2𝜇
2𝜆 − 2𝜇 = −4
𝝀 − 𝝁 = −2
Solving both equations
𝝀=−𝟒, 𝝁=−𝟐
Putting 𝝀=−𝟒 in 𝒓 ⃗
𝑟 ⃗ = 3𝑖 ̂ + 2𝑗 ̂ − 4𝑘 ̂ + 𝜆 (𝑖 ̂ + 2𝑗 ̂ + 2𝑘 ̂)
𝑟 ⃗ = 3𝑖 ̂ + 2𝑗 ̂ − 4𝑘 ̂ − 4(𝑖 ̂ + 2𝑗 ̂ + 2𝑘 ̂)
𝑟 ⃗ = 3𝑖 ̂ + 2𝑗 ̂ − 4𝑘 ̂ − 4𝑖 ̂ − 8𝑗 ̂ − 8𝑘 ̂
𝑟 ⃗ = −𝑖 ̂ − 6𝑗 ̂ − 12𝑘 ̂
So, Point of intersection is (−1, −6, −12)
Show More