Find the equation of the normal to the curve y = 𝑥 + 1/x, x > 0 perpendicular to the line 3𝑥 − 4𝑦 = 7.



CBSE Class 12 Sample Paper for 2021 Boards
CBSE Class 12 Sample Paper for 2021 Boards
Last updated at Dec. 16, 2024 by Teachoo
Transcript
Question 22 Find the equation of the normal to the curve y = 𝑥 + 1/𝑥, x > 0 perpendicular to the line 3𝑥 − 4𝑦 = 7 Finding Slope y = x + 1/𝑥 Differentiating both sides 𝑑𝑦/𝑑𝑥 = 1 − 1/𝑥^2 Now, Slope of Normal = (−𝟏)/(𝟏 − 𝟏/𝒙^𝟐 ) Given that Normal is perpendicular to 3x − 4y = 7 So, Slope of Normal × Slope of Line = −1 (−1)/(1 − 1/𝑥^2 ) × 3/4 = −1 3/4 = 1 − 1/𝑥^2 1 − 1/𝑥^2 = 3/4 1 − 3/4 = 1/𝑥^2 1/4 = 1/𝑥^2 x2 = 4 x = ± 2 Since x > 0 ∴ x = 2 Finding y when x = 2 y = x + 1/𝑥 y = 2 + 1/2 y = 𝟓/𝟐 Now, Slope of Normal is (−𝟒)/𝟑 and it passes through point (2, 𝟓/𝟐) So, equation of Normal is (y − y1) = m (x − x1) y − 5/2 = − 4/3 (x − 2) y − 5/2 = − 4/3x + 8/3 Multiplying both sides by 6 6y − 6 × 5/2 = −6 × 4/3x + 6 × 8/3 6y − 15 = −8x + 16 8x + 6y = 31