Slide6.JPG

Slide7.JPG

 

Go Ad-free

Transcript

Example 3 Line-segment AB is parallel to another line-segment CD. O is the mid-point of AD (see figure). Show that (i) ∆AOB ≅ ∆DOC (ii) O is also the mid point of BC Given: AB || CD O is the mid-point of AD i.e. OA = OD To prove: (i) ∆AOB ≅ ∆DOC (ii) O is also the mid point of BC i.e. OB = OC Proof: AB || CD and BC is the transversal, ∠ABO = ∠ DCO Also, since lines AD & BC intersect ∠AOB = ∠ DOC Consider ∆ AOB and ∆ DOC. ∠ABO = ∠ DCO ∠AOB = ∠ DOC OA = OD ∴ ∆ AOB ≅ ∆ DOC So, OB = OC Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo