Chapter 7 Class 9 Triangles
Concept wise

Slide9.JPG

Slide10.JPG
Slide8.JPG

Go Ad-free

Transcript

Ex7.2, 4 ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see the given figure). Show that (i) ABE ACF (ii) AB = AC, i.e., ABC is an isosceles triangle. Comparison with Ex 7.2 , 3 In Ex 7.2 , 3 AB = AC given , we have to prove BE = CF In Ex 7.2 , 4 Here, BE = CF given , we have to prove AB = AC Ex7.2, 4 ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see the given figure). Show that (i) ABE ACF (ii) AB = AC, i.e., ABC is an isosceles triangle. Given: BE = CF BE and CF are altitudes. So, AEB = 90 and AFC = 90 To prove: ABE ACF & AB = AC Proof: In ABE and ACF, AEB = AFC A = A BE = CF ABE ACF AB = AC Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo