Using the properties of determinants, prove that
| (y + z) 2 x 2 x 2 y 2 (z + x) 2 y 2 z 2 z 2 (x + y) 2 | = 2xyz (x + y + z) 3







CBSE Class 12 Sample Paper for 2020 Boards
CBSE Class 12 Sample Paper for 2020 Boards
Last updated at Dec. 16, 2024 by Teachoo
Transcript
Question 33 (OR 1st Question) Using the properties of determinants, prove that [ (y + z)2 x2 x2 y2 (z + x)2 y2 z2 z2 (x + y)2 ] 2xyz (x + y + z)3 [ (y + z)2 x2 x2 y2 (z + x)2 y2 z2 z2 (x + y)2 ] Applying C2 -> C2 - C1 = | (y + z)2 x2 - (y + z)2 x2 y2 (z + x)2 - y2 y2 z2 z2 - z2 (x + y)2 = | y + z |2 (x - (y + z)) (x + (y + z)) x2 y2 ((z + x) - y ((z + x ) + y y2 z2 0 (x + y)2 = | (y + z)2 (x - y - z) (x + y + z) x2 y2 (x + z - y) (x + y + z) y2 z2 0 (x + y)2 Applying C3-> C3 - C1 | (y + z)2 (x - y - z) (x + y + z) x2 - (y + z)2 y2 (x + z - y) (x + y + z) y2 - y2 z2 0 (x + y)2 - z2 = (y + z)2 (x - y - z) (x + y + z) (x - (y + z) (x + (y + z) y2 (x + z - y) (x + y + z) 0 z2 0 ((x + y) - z) ((x + y) + z) = | (y + z)2 (x - y - z) (x + y + z) (x - y - z) (x + y + z) y2 (x + z - y) (x + y + z) 0 z2 0 (x + y - z) (x + y + z) Taking (x + y + z) common from both c2 and c3 = (x + y + z)2 | (y + z)2 (x - y - z) (x - y - z) y2 (x + z - y) 0 z2 0 (x + y - z) Applying R1 -> R1 - R2 = (x + y + z)2 | (y + z)2 - y2 (x - y - z) - (x + z - y) (x - y - z) - 0 y2 (x + z - y) 0 z2 0 (x + y - z) = (x + y + z)2 | (y + z) - y (y + z) + y) -2z (x - y - z) y2 (x + z - y) 0 z2 0 (x + y - z) = (x + y + z)2 | z (2y + z) - 2z (x - y - z) y2 (x + z - y) 0 z2 0 (x + y - z) = (x + y + z)2 | 2yz2 - z2 (x - y - z) y2 (x + z - y) 0 z2 0 (x + y - z) Applying R1 -> R1 - R3 = (x + y + z)2 | 2yz +z2 - Z2 -2z - 0 (x - y - z) - (x + y - z) y2 (x + z - y) 0 z2 0 (x + y - z) = (x + y + z)2 |2yz -2z -2y y2 (x + z - y) 0 z2 0 (x + y - z) Applying C2 -> C2 + 1/y + C1 = (x + y + z) | 2yz -2z + 1/y + 2yz -2y y2 (x + z - y) + 1/y x y2 0 z2 0 + 1/y + z2 (x + y - z) = (x + y + z) | 2yz -2z + 2z -2y y2 (x + z - y) + y 0 z2 z2/y (x + y - z) | Applying C3 -> C3 + 1/z + C1 = (x + y + z )2 | 2yz 0 -2y + 1/z + 2yz y2 (x + z) 0 + 1/z x y2 z2 z2/y (x + y - z) + 1/z x z2 = (x + y + z)2 | 2yz 0 -2y + 2y y2 (x + z) y2/z z2 z2/y (x + y - z) + z = (x + y + z)2 |2yz 0 0 y2 (x + z) y2/z z2 z2/y (x + y) | Expanding Determinant along R1 = (𝑥 + 𝑦 + 𝑧)^2 × [𝟐𝒚𝒛 ((𝒙 + 𝒛)(𝒙 + 𝒚) − 𝒛^𝟐/𝒚 × 𝒚^𝟐/𝒛) − 𝟎 − 𝟎] = (𝑥 + 𝑦 + 𝑧)^2 × 2𝑦𝑧 ((𝑥 + 𝑧)(𝑥 + 𝑦) − 𝑧𝑦) = (𝑥 + 𝑦 + 𝑧)^2 × 2𝑦𝑧 (𝑥(𝑥 + 𝑦) + 𝑧(𝑥 + 𝑦) − 𝑧𝑦) = (𝑥 + 𝑦 + 𝑧)^2 × 2𝑦𝑧 (𝑥^2 + 𝑥𝑦 + 𝑧𝑥 + 𝑧𝑦 − 𝑧𝑦) = (𝑥 + 𝑦 + 𝑧)^2 × 2𝑦𝑧 (𝑥^2 + 𝑥𝑦 + 𝑧𝑥) = (𝑥 + 𝑦 + 𝑧)^2 × 2𝑥𝑦𝑧 × (𝑥 + 𝑦 + 𝑧) = 2𝑥𝑦𝑧(𝑥 + 𝑦 + 𝑧)^3 Hence proved