Ex 2.4
Ex 2.4, 1 (ii)
Ex 2.4, 1 (iii) Important
Ex 2.4, 1 (iv)
Ex 2.4, 1 (v)
Ex 2.4, 2 (i)
Ex 2.4, 2 (ii) Important
Ex 2.4, 2 (iii)
Ex 2.4, 3 (i)
Ex 2.4, 3 (ii) Important
Ex 2.4, 3 (iii)
Ex 2.4, 4 (i)
Ex 2.4, 4 (ii)
Ex 2.4, 4 (iii) Important
Ex 2.4, 4 (iv)
Ex 2.4, 4 (v)
Ex 2.4, 4 (vi)
Ex 2.4, 5 (i)
Ex 2.4, 5 (ii) Important
Ex 2.4, 6 (i)
Ex 2.4, 6 (ii)
Ex 2.4, 6 (iii)
Ex 2.4, 6 (iv) Important
Ex 2.4, 7 (i)
Ex 2.4, 7 (ii)
Ex 2.4, 7 (iii) Important
Ex 2.4, 8 (i)
Ex 2.4, 8 (ii)
Ex 2.4, 8 (iii) Important
Ex 2.4, 8 (iv) Important
Ex 2.4, 8 (v)
Ex 2.4, 9 (i)
Ex 2.4, 9 (ii)
Ex 2.4, 10 (i) Important
Ex 2.4, 10 (ii)
Ex 2.4, 11
Ex 2.4,12 Important
Ex 2.4,13 You are here
Ex 2.4, 14 (i)
Ex 2.4, 14 (ii) Important
Ex 2.4, 15 (i)
Ex 2.4, 15 (ii) Important
Ex 2.4, 16 (i)
Ex 2.4, 16 (ii) Important
Ex 2.4
Last updated at April 16, 2024 by Teachoo
Ex 2.4, 13 If x + y + z = 0, show that x3 + y3 + z3 = 3xyz . We know that x3 + y3 + z3 3xyz = (x + y + z) (x2 + y2 + z2 xy yz zx) Putting x + y + z = 0, x3 + y3 + z3 3xyz = (0) (x2 + y2 + z2 xy yz zx) x3 + y3 + z3 3xyz = 0 x3 + y3 + z3 = 3xyz Hence proved